estimate 包所有函数超详细解读及计算免疫浸润评分

estimate包可以通过RNA-seq的数据来计算标本的免疫及机制评分,进而评估肿瘤的纯度,其原理通过特征的肿瘤的RNA-seq的signture来评估以上内容,其输入文件需要的为RNA-seq的矩阵,内在还是需要common_genes-data来计算。以下详细解读这个包的常用函数的用法并计算评分

首先按照包

install.packages("estimate", repos="http://R-Forge.R-project.org")
library(estimate)

首先应用自带的内在数据集

OvarianCancerExpr <- system.file("extdata", "sample_input.txt", package="estimate")
read.table(OvarianCancerExpr)[1:4,1:4]
内置数据集,行名为样本名,列名为基因的symbol

下面我们应用filterCommonGenes这个函数来取我们自己的表达矩阵与作者gene data set 的交集

filterCommonGenes(input.f=OvarianCancerExpr,#输入文件,为自己的表达矩阵
                  output.f="OV_10412genes.gct",#定义输出到工作目录的输出文件名,后缀为gct
                  id="GeneSymbol")#我们数据集的列名为GeneSymbol,因此这里选择拿GeneSymbol进行匹配

以下我们看下生成的OV_10412genes.gct文件

rt<-read.table("OV_10412genes.gct", 
               skip = 2, 
               header = TRUE, 
               sep = "\t")
View(rt)
保留前2行的时候数据模式,可以看到有10412个基因,10个样本

去掉前2行后,可以看到剩下的数据为一个新的数据集矩阵

estimate包内其实包含了内置的共有基因的数据集,名称为common_genes,以下我们来看下

data("common_genes")
View(common_genes)
包里内置的common genes

从这个数据集可以看出,在filterCommonGenes函数中参数id我们还可以选择EntrezID

之后estimateScore函数计算各种免疫及基质评分

estimateScore(input.ds = "OV_10412genes.gct", #刚才过滤得到的输入文件
              output.ds="estimateScore.gct", #输出的输出文件
              platform="affymetrix") #注意平台,如果为TCGA或者测序数据则选择illumina

这是这个包的主要函数,下图为改函数的用法


注意不同平台的选择不同,我们为测序数据

以下整理数据的格式

estimateScore.gct文件的原始模式,可以看到,前2行为注释行
scores=read.table("estimateScore.gct",#读取文件
                  skip = 2,#删除前2行
                  header = T)#第一行为列名
View(scores)
scores数据集模式,可以看到,列名为样本名,行名为三种评分的名称
rownames(scores)=scores[,1]#取第一列为行名
scores=t(scores[,3:ncol(scores)])#取3列到最后1列的数据并进行数据转置
View(scores)
最后这里好的数据集,行名为样本名,列名为三种评分
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,277评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,689评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,624评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,356评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,402评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,292评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,135评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,992评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,429评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,636评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,785评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,492评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,092评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,723评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,858评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,891评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,713评论 2 354

推荐阅读更多精彩内容