Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:Could you do both operations in O(1) time complexity?
The problem can be solved with a hashtable that keeps track of the keys and its values in the double linked list.
class Node {
int key;
int value;
Node pre;
Node next;
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
public class LRUCache {
HashMap<Integer, Node> map;
int capicity, count;
Node head, tail;
public LRUCache(int capacity) {
this.capicity = capacity;
map = new HashMap<>();
head = new Node(0, 0);
tail = new Node(0, 0);
head.next = tail;
tail.pre = head;
head.pre = null;
tail.next = null;
count = 0;
}
public void deleteNode(Node node) {
node.pre.next = node.next;
node.next.pre = node.pre;
}
public void addToHead(Node node) {
node.next = head.next;
node.next.pre = node;
node.pre = head;
head.next = node;
}
public int get(int key) {
if (map.get(key) != null) {
Node node = map.get(key);
int result = node.value;
deleteNode(node);
addToHead(node);
return result;
}
return -1;
}
public void set(int key, int value) {
if (map.get(key) != null) {
Node node = map.get(key);
node.value = value;
deleteNode(node);
addToHead(node);
} else {
Node node = new Node(key, value);
map.put(key, node);
if (count < capicity) {
count++;
addToHead(node);
} else {
map.remove(tail.pre.key);
deleteNode(tail.pre);
addToHead(node);
}
}
}
}