风格迁移论文总结

本文是基于neural style transfer a review 以及其他相关论文。

1. 基于图像迭代的描述性神经方法

代表性文章时gaty的开山之作,A neural algorithm of artistic style. 这是一种慢的神经网络实现风格迁移的方法。

重点之一:常见的深度学习问题是利用训练样本的输入来学习网络的权重。而本文利用已经训练好的权重,获取一个符合输出要求的输入。

输入:以高斯噪声为初始化的输入图像。

经过多次迭代,输入响应即为特定风格和内容的图像。所以这种方法学习的是像素值,而不是权重。

重点之二:引入了新的loss function。

content loss: 即输入输出图像之间像素点的差。用mse来做。

style loss:用gram matrics来计算。最终表现形式也是mse类似。

2. 基于模型迭代的生成式神经方法

基于模型迭代的方法是快速的风格迁移的方法。

2.1  一种风格一个模型

代表作是perceptual losses for real-time style transfer and super-resolution。

重点之一:本文介绍了两个网络组成的大网络。前半部分的网络叫做image transfer,后半部分的网络叫做loss network。image transfer的网络,权重是更新的;而loss network的网络,权重是不更新的,是pretrained的vgg网络,是用来做高维特征提取的。其实就是输入原图,然后通过image transfer网络,来生成带有风格fs的输出,然后用loss network来优化误差,以达到理想的效果。

重点之二:提出来新的loss function。

feature reconstruction loss: 这里不采用与A neural algorithm of artistic style这篇论文一样的loss function,而是用vgg提取特征作为content loss的衡量。作者这么做的目的就是说,原来那种像素点之间的一一对应的误差函数,在很多情况下的衡量是不准确的。比如两张图片,只发生了一个像素点的偏移。用content loss算出来的话,这个结果是天差地别的,然而实际上这两张图片对人眼来说是没有太大差别的。所以用vgg提取的高层特征作为content loss是有道理的。但是,这种方法也有一个缺点,那就是学出来的东西比较假,不会太真实。

style reconstruction loss:这里和上一篇一样,都使用了gram matrix来作为风格特征。

2.2 多种风格一个模型

2.3 任意风格一个模型

3. 当前方法上的轻微修改

4. 特定类型图像的扩展

(1) DSLR-Quality photos on mobile devices with deep convolutional networks.

这篇论文的输入是手机照片(比如iphone, blackberry等),输出是单反照片。

重点之一:使用gan网络

重点之二:增加了新的loss function。

color loss:颜色损失计算之前,要对图像进行高斯模糊处理。为什么用高斯模糊处理的原因是,高斯模糊能出去高频的信息,使得颜色之间更容易比较。颜色损失对小的误差匹配有较高的容忍性。因此,能学习到和目标图片相似的颜色分布。

texture loss:使用gan网络,用判别网络的正确率来作为质地误差的衡量。

content loss:以vgg抽象出的高维特征的欧式距离作为内容损失。和上面采用gram matrix不同。

total variation loss:目的是获得较为平滑的输出。

(2) Deep photo style transfer.

之前的风格迁移论文都是建立在一张为摄影图片,另一张为艺术作品。使得生成的图片像画出来的一样,而这篇论文的内容图和风格图皆为摄影作品。

重点之一:loss function进行了修改。

content loss:采用了feature matrix,同gatys的。

photorealism regularization: 基于颜色空间局部仿射变换的photorealism的正则约束。

augmented style loss with semantic segmentation: 基于语义分割的增广内容损失函数。将分割mask作为输入图像的增广channel,一同输入到神经网络中,从而确保只处理我们感兴趣的内容。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容