使用Python创建LDA模型进行分类

来源:数据分析网

线性判别式分析(Linear Discriminant Analysis)简称LDA,是模式识别的经典算法。通过对历史数据进行投影,以保证投影后同一类别的数据尽量靠近,不同类别的数据尽量分开。并生成线性判别模型对新生成的数据进行分离和预测。本篇文章使用机器学习库scikit-learn建立LDA模型,并通过绘图展示LDA的分类结果。

准备工作

首先是开始前的准备工作,导入需要使用的库文件,本篇文章中除了常规的数值计算库numpy,科学计算库pandas,和绘图库matplotlib以外,还有绘图库中的颜色库,以及机器学习中的数据预处理和LDA库。

#导入数值计算库
import numpy as np
#导入科学计算库
import pandas as pd
#导入绘图库
import matplotlib.pyplot as plt
#导入绘图色彩库产生内置颜色
from matplotlib.colors import ListedColormap
#导入数据预处理库
from sklearn import preprocessing
#导入linear discriminant analysis库
from sklearn.lda import LDA

读取数据

读取并创建名称为data的数据表,后面我们将使用这个数据表创建LDA模型并绘图。

#读取数据并创建名为data的数据表
data=pd.DataFrame(pd.read_csv('LDA_data.csv'))

使用head函数查看数据表的前5行,这里可以看到数据表共有三个字段,分别为贷款金额loan_amnt,用户收入annual_inc和贷款状态loan_status。

#查看数据表的前5行
data.head()

设置模型特征X和目标Y

将数据表中的贷款金额和用户收入设置为模型特征X,将贷款状态设置为模型目标Y,也就是我们要分类的结果。

#设置贷款金额和用户收入为特征X
X = np.array(data[['loan_amnt','annual_inc']])
#设置贷款状态为目标Y
Y = np.array(data['loan_status’])

对特征进行标准化处理

贷款金额和用户收入间差异较大,属于两个不同量级的数据。因此需要对数据进行标准化处理,转化为无量纲的纯数值。

#特征数据进行标准化
scaler = preprocessing.StandardScaler().fit(X)
X_Standard=scaler.transform(X)

下面是经过标准化处理后的特征数据。

#查看标准化后的特征数据
X_Standard
#设置分类平滑度
h = .01

创建LDA模型并拟合数据

将标准化后的特征X和目标Y代入到LDA模型中。下面是具体的代码和计算结果。

#创建LDA模型
clf = LDA()
clf.fit(X_Standard,Y)

绘图数据预处理

对绘图数据进行预处理,计算X和Y的边界值,并使用meshgrid函数计算坐标向量矩阵。

#设置X和Y的边界值
x_min, x_max = X_Standard[, 0].min() - 1, X_Standard[, 0].max() + 1
y_min, y_max = X_Standard[, 1].min() - 1, X_Standard[, 1].max() + 1
#使用meshgrid函数返回X和Y两个坐标向量矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max,h), np.arange(y_min, y_max,h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

设置图表所使用的颜色,这里使用的是HEX值。

#设置colormap颜色
cm_bright = ListedColormap(['#D9E021', '#0D8ECF’])

绘制LDA分类图表

首先绘制LDA分类图表的边界,这里使用之前计算的坐标矩阵,并设置的colormap颜色和透明度。

#绘制分类边界
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=cm_bright,alpha=0.6)

最后绘制LDA图表中的数据点,并设置colormap颜色以及图表标题。以下是具体代码和图表。

#绘制数据点
plt.scatter(X_Standard[, 0], X_Standard[, 1], c=Y, cmap=cm_bright)
plt.title('Linear Discriminant Analysis Classifiers')
plt.axis('tight')
plt.show()

今年第六届大会PyConChina2016,由PyChina.org发起,CPyUG/TopGeek 等社区协办,将在2016年9月10日(上海)9月25日(深圳)10月15日(北京、杭州)地举办的针对Python开发者所举办的最盛大和权威的Python相关技术会议,由PyChina社区主办,致力于推动各类Python相关的技术在互联网、企业应用等领域的研发和应用。

您可以点击此处
了解更多详情,或者扫描下图二维码:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容