在RxSwfit
中,有两个特殊序列
deallocating
序列deallocated
序列
在RxSwift
中deinit
等价于dealloc
,在上面两个序列被订阅时,那么当deinit
调用时会触发上面两个序列发送信号。执行顺序:deallocating
-> deinit
-> deallocated
。看一段代码:
override func viewDidLoad() {
_ = rx.deallocating.subscribe(onNext: { () in
print("准备走了")
})
_ = rx.deallocated.subscribe(onNext: { () in
print("已经走了")
})
}
override func viewDidAppear(_ animated: Bool) {
print("我来了")
}
deinit {
print("\(self.classForCoder) 销毁")
}
打印如下:
我来了
准备走了
SecondController 销毁
已经走了
从上面代码我们可以看出,RxSwift
对deinit(dealloc)
动了手脚,通常通过黑魔法就能够达到该效果,在OC
中我们经常使用runtime
来交换方法,在方法内部处理我们需要做的事情。那么RxSwift
是如何实现的呢?下面就看看源码都做了哪些事情。
deallocating序列的创建
extension Reactive where Base: AnyObject {
public var deallocating: Observable<()> {
return self.synchronized {
do {
let proxy: DeallocatingProxy = try self.registerMessageInterceptor(deallocSelector)
return proxy.messageSent.asObservable()
}
catch let e {
return Observable.error(e)
}
}
}
}
-
deallocating
是Reactive
的扩展方法,继承自AnyObject
相当于OC
中的NSObject
- 使用同步锁来保证线程安全
- 内部通过
self.registerMessageInterceptor
传入deallocSelector
来初始化一个DeallocatingProxy
对象 - 通过
messageSent
获取一个ReplaySubject
序列
deallocSelector
一看就是一个方法选择器。实现如下:
private let deallocSelector = NSSelectorFromString("dealloc")
- 使用
NSSelectorFromString
方法来获取dealloc
选择器
由此可以看出,RxSwift
确实是在dealloc
(即Swfit
中的deinit
)上做文章。这里只是初始化了proxy
对象,具体消息如何传出来的,还要继续代码追踪。
proxy对象的创建
fileprivate func registerMessageInterceptor<T: MessageInterceptorSubject>(_ selector: Selector) throws -> T {
let rxSelector = RX_selector(selector)
let selectorReference = RX_reference_from_selector(rxSelector)
let subject: T
if let existingSubject = objc_getAssociatedObject(self.base, selectorReference) as? T {
subject = existingSubject
}
else {
subject = T()
objc_setAssociatedObject(
self.base,
selectorReference,
subject,
.OBJC_ASSOCIATION_RETAIN_NONATOMIC
)
}
if subject.isActive {
return subject
}
var error: NSError?
let targetImplementation = RX_ensure_observing(self.base, selector, &error)
if targetImplementation == nil {
throw error?.rxCocoaErrorForTarget(self.base) ?? RxCocoaError.unknown
}
subject.targetImplementation = targetImplementation!
return subject
}
-
selector
外部传入的dealloc
的方法选择器 -
RX_selector
方法通过dealloc
方法名构建了另外一个方法选择器
SEL __nonnull RX_selector(SEL __nonnull selector) {
NSString *selectorString = NSStringFromSelector(selector);
return NSSelectorFromString([RX_PREFIX stringByAppendingString:selectorString]);
}
从上面以看出我们的代码进入到OC
区了,使用OC
的方法来满足需求。沿着我们想要的结果去找方法,前面提到dealloc
可能被替换了,通过代码中的targetImplementation
,感觉像是一个目标实现,进入代码看一下:
IMP __nullable RX_ensure_observing(id __nonnull target, SEL __nonnull selector, NSErrorParam error) {
__block IMP targetImplementation = nil;
@synchronized(target) {
@synchronized([target class]) {
[[RXObjCRuntime instance] performLocked:^(RXObjCRuntime * __nonnull self) {
targetImplementation = [self ensurePrepared:target
forObserving:selector
error:error];
}];
}
}
return targetImplementation;
}
- 返回一个
IMP
函数指针 -
[RXObjCRuntime instance]
实际上是一个NSObject
的一个单例,内部采用互斥锁,向外部提供当前单例对象 -
ensurePrepared
消息发送的入口点
ensurePrepared函数
搜索或直接cmd+点击
定位代码:
-(IMP __nullable)ensurePrepared:(id __nonnull)target forObserving:(SEL __nonnull)selector error:(NSErrorParam)error {
Method instanceMethod = class_getInstanceMethod([target class], selector);
if (instanceMethod == nil) {
RX_THROW_ERROR([NSError errorWithDomain:RXObjCRuntimeErrorDomain
code:RXObjCRuntimeErrorSelectorNotImplemented
userInfo:nil], nil);
}
if (selector == @selector(class)
|| selector == @selector(forwardingTargetForSelector:)
|| selector == @selector(methodSignatureForSelector:)
|| selector == @selector(respondsToSelector:)) {
RX_THROW_ERROR([NSError errorWithDomain:RXObjCRuntimeErrorDomain
code:RXObjCRuntimeErrorObservingPerformanceSensitiveMessages
userInfo:nil], nil);
}
// For `dealloc` message, original implementation will be swizzled.
// This is a special case because observing `dealloc` message is performed when `observeWeakly` is used.
//
// Some toll free bridged classes don't handle `object_setClass` well and cause crashes.
//
// To make `deallocating` as robust as possible, original implementation will be replaced.
if (selector == deallocSelector) {
Class __nonnull deallocSwizzingTarget = [target class];
IMP interceptorIMPForSelector = [self interceptorImplementationForSelector:selector forClass:deallocSwizzingTarget];
if (interceptorIMPForSelector != nil) {
return interceptorIMPForSelector;
}
if (![self swizzleDeallocating:deallocSwizzingTarget error:error]) {
return nil;
}
interceptorIMPForSelector = [self interceptorImplementationForSelector:selector forClass:deallocSwizzingTarget];
if (interceptorIMPForSelector != nil) {
return interceptorIMPForSelector;
}
}
}
看到几个熟悉的身影:
-
class_getInstanceMethod
获取当前界面对象的dealloc
方法,来判断该类是否存在该方法,容错处理,对方法替换没关系 - 再看看注释:替换原始的
dealloc
方法。好像是我们需要找的地方 -
deallocSwizzingTarget
获取到要替换dealloc
的目标类 -
swizzleDeallocating
传入目标类准备替换dealloc
为deallocating
swizzleDeallocating
SWIZZLE_INFRASTRUCTURE_METHOD(
void,
swizzleDeallocating,
,
deallocSelector,
DEALLOCATING_BODY
)
该处是个函数宏定义,内部整理如下:
#define SWIZZLE_INFRASTRUCTURE_METHOD(return_value, method_name, parameters, method_selector, body, ...)
SWIZZLE_METHOD(return_value, -(BOOL)method_name:(Class __nonnull)class parameters error:(NSErrorParam)error
{
SEL selector = method_selector; , body, NO_BODY, __VA_ARGS__)
// common base
#define SWIZZLE_METHOD(return_value, method_prototype, body, invoked_body, ...)
method_prototype
__unused SEL rxSelector = RX_selector(selector);
IMP (^newImplementationGenerator)(void) = ^() {
__block IMP thisIMP = nil;
id newImplementation = ^return_value(__unsafe_unretained id self DECLARE_ARGUMENTS(__VA_ARGS__)) {
body(__VA_ARGS__)
struct objc_super superInfo = {
.receiver = self,
.super_class = class_getSuperclass(class)
};
return_value (*msgSend)(struct objc_super *, SEL DECLARE_ARGUMENTS(__VA_ARGS__))
= (__typeof__(msgSend))objc_msgSendSuper;
@try {
return msgSend(&superInfo, selector ARGUMENTS(__VA_ARGS__));
}
@finally { invoked_body(__VA_ARGS__) }
};
thisIMP = imp_implementationWithBlock(newImplementation);
return thisIMP;
};
IMP (^replacementImplementationGenerator)(IMP) = ^(IMP originalImplementation) {
__block return_value (*originalImplementationTyped)(__unsafe_unretained id, SEL DECLARE_ARGUMENTS(__VA_ARGS__) )
= (__typeof__(originalImplementationTyped))(originalImplementation);
__block IMP thisIMP = nil;
id implementationReplacement = ^return_value(__unsafe_unretained id self DECLARE_ARGUMENTS(__VA_ARGS__) ) {
body(__VA_ARGS__)
@try {
return originalImplementationTyped(self, selector ARGUMENTS(__VA_ARGS__));
}
@finally { invoked_body(__VA_ARGS__) }
};
thisIMP = imp_implementationWithBlock(implementationReplacement);
return thisIMP;
};
return [self ensureSwizzledSelector:selector
ofClass:class
newImplementationGenerator:newImplementationGenerator
replacementImplementationGenerator:replacementImplementationGenerator
error:error];
}
代码看上去很繁琐,将参数一一对比能够看到,内部实际是重新组合了一个方法,参数为当前界面对象的类deallocSwizzingTarget
。内部实现了一个闭包并返回IMP
函数指针:
-
replacementImplementationGenerator
代码块保存原始dealloc
的函数地址,并在内部调用 - 在代码块中调用了
imp_implementationWithBlock
函数,获取代码块的函数指针
下面先看一下imp_implementationWithBlock
函数的作用。
imp_implementationWithBlock
该函数接收一个block
将其拷贝到堆区,返回一个IMP
函数指针,把block
当做OC
中类的方法实现来使用。举例如下,用block
代替原有方法实现:
-(void)myMethod{
NSLog(@"我来了");
}
……
//1、创建block
void (^myblock)(int val) = ^(int val){
NSLog(@"myblock");
};
//2、获取block的IMP
IMP myblockImp = imp_implementationWithBlock(myblock);
//3、获取要替换的方法的IMP
Method method = class_getInstanceMethod(self.class, @selector(myMethod));
//4、替换函数指针,指向block
method_setImplementation(method, myblockImp);
//5、执行原始方法
[self myMethod];
打印:我来了
使用该函数是为了用代码块来替换一个需要替换的方法。
以上宏定义的函数最后调用了ensureSwizzledSelector
方法,搜索查看代码:
ensureSwizzledSelector
-(BOOL)ensureSwizzledSelector:(SEL __nonnull)selector
ofClass:(Class __nonnull)class
newImplementationGenerator:(IMP(^)(void))newImplementationGenerator
replacementImplementationGenerator:(IMP (^)(IMP originalImplementation))replacementImplementationGenerator
error:(NSErrorParam)error {
if ([self interceptorImplementationForSelector:selector forClass:class] != nil) {
DLOG(@"Trying to register same intercept at least once, this sounds like a possible bug");
return YES;
}
#if TRACE_RESOURCES
atomic_fetch_add(&numberOInterceptedMethods, 1);
#endif
DLOG(@"Rx is swizzling `%@` for `%@`", NSStringFromSelector(selector), class);
Method existingMethod = class_getInstanceMethod(class, selector);
ALWAYS(existingMethod != nil, @"Method doesn't exist");
const char *encoding = method_getTypeEncoding(existingMethod);
ALWAYS(encoding != nil, @"Encoding is nil");
IMP newImplementation = newImplementationGenerator();
if (class_addMethod(class, selector, newImplementation, encoding)) {
// new method added, job done
[self registerInterceptedSelector:selector implementation:newImplementation forClass:class];
return YES;
}
imp_removeBlock(newImplementation);
// if add fails, that means that method already exists on targetClass
Method existingMethodOnTargetClass = existingMethod;
IMP originalImplementation = method_getImplementation(existingMethodOnTargetClass);
ALWAYS(originalImplementation != nil, @"Method must exist.");
IMP implementationReplacementIMP = replacementImplementationGenerator(originalImplementation);
ALWAYS(implementationReplacementIMP != nil, @"Method must exist.");
IMP originalImplementationAfterChange = method_setImplementation(existingMethodOnTargetClass, implementationReplacementIMP);
ALWAYS(originalImplementation != nil, @"Method must exist.");
// If method replacing failed, who knows what happened, better not trying again, otherwise program can get
// corrupted.
[self registerInterceptedSelector:selector implementation:implementationReplacementIMP forClass:class];
// ¯\_(ツ)_/¯
if (originalImplementationAfterChange != originalImplementation) {
THREADING_HAZARD(class);
return NO;
}
return YES;
}
-
interceptorImplementationForSelector
查看dealloc
是否存在对应的函数,如果有往下走,开始对dealloc
做替换 -
class_addMethod
,既然dealloc
存在对应的函数,添加必然失败,继续向下走 -
method_setImplementation
,开始设置dealloc
的IMP
指向上面提到的代码块replacementImplementationGenerator
中
在此处即替换了系统方法,当系统调用了dealloc
时就会触发replacementImplementationGenerator
中的block
方法。
IMP (^replacementImplementationGenerator)(IMP) = ^(IMP originalImplementation) {
__block return_value (*originalImplementationTyped)(__unsafe_unretained id, SEL DECLARE_ARGUMENTS(__VA_ARGS__) )
= (__typeof__(originalImplementationTyped))(originalImplementation);
__block IMP thisIMP = nil;
id implementationReplacement = ^return_value(__unsafe_unretained id self DECLARE_ARGUMENTS(__VA_ARGS__) ) {
body(__VA_ARGS__)
@try {
return originalImplementationTyped(self, selector ARGUMENTS(__VA_ARGS__));
}
@finally { invoked_body(__VA_ARGS__) }
};
thisIMP = imp_implementationWithBlock(implementationReplacement);
return thisIMP;
};
在以上代码中我可以看到一个body
函数的调用,该处即是关键。
body-DEALLOCATING_BODY
搜索找到宏并整理如下:
#define DEALLOCATING_BODY(...)
id<RXDeallocatingObserver> observer = objc_getAssociatedObject(self, rxSelector);
if (observer != nil && observer.targetImplementation == thisIMP) {
[observer deallocating];
}
-
rxSelector
即是要替换的方法选择器即deallocating
对应的选择器 -
observer
序列在此处调用了deallocating
,此时deallocating
就被调用
@objc func deallocating() {
self.messageSent.on(.next(()))
}
deinit {
self.messageSent.on(.completed)
}
-
.commpleted
结束序列,因此不需要在外部添加垃圾袋
此处即是向订阅发送消息,这里前边文章都有代码追踪这里就不一一介绍了。deallocating
调用后,上面有讲到,body
调用后即调用代码块保存的原始dealloc
函数:
return originalImplementationTyped(self, selector ARGUMENTS(__VA_ARGS__));
联系上面定义,可知originalImplementationTyped
是dealloc
的原始函数,在此处调用了dealloc
,由于代码比较繁琐,下面来证明一下该处就是触发dealloc
的方法。我们可以将次闭包的参数换成viewDidAppear
,在RxCocoa
-> _RXObjeCRuntime.m
中的ensureSwizzledSelector
方法中替换:
将如下:
replacementImplementationGenerator(originalImplementation);
替换为:
IMP viewdidAppear = class_getMethodImplementation(class, @selector(viewDidAppear:));
IMP implementationReplacementIMP = replacementImplementationGenerator(viewdidAppear);
替换为视图出现时调用的方法,如果在掉用deallocating
后,viewdidAppear
被调用则能够证明上面所指之处就是我们触发dealloc
的方法。
替换前的打印:
我来了
准备走了
SecondController 销毁
已经走了
替换后的打印:
我来了
准备走了
我来了
通过以上测试能够确定dealloc
就是在代码块中调用的。注意在修改源码后要clean
一下工程,否则缓存会影响执行结果。
deallocated序列的创建
下面看看deallocated
序列是如何产生,又是如何在dealloc
调用完成之后执行的。
public var deallocated: Observable<Void> {
return self.synchronized {
if let deallocObservable = objc_getAssociatedObject(self.base, &deallocatedSubjectContext) as? DeallocObservable {
return deallocObservable._subject
}
let deallocObservable = DeallocObservable()
objc_setAssociatedObject(self.base, &deallocatedSubjectContext, deallocObservable, .OBJC_ASSOCIATION_RETAIN_NONATOMIC)
return deallocObservable._subject
}
}
- 关联了创建的序列,保证当前控制器内的序列对象只有一个
DeallocObservable
代码:
fileprivate final class DeallocObservable {
let _subject = ReplaySubject<Void>.create(bufferSize:1)
init() {
}
deinit {
self._subject.on(.next(()))
self._subject.on(.completed)
}
}
- 内部也初始化了一个
ReplaySubject
序列,用来发送消息 - 在对象销毁时调用了
.next
和.completed,这里不难理解,发送一条消息,再发送一条完成消息终止序列,因此在外部创建序列不需要添加垃圾袋
总结
- 在
RxSwift
中提供了两个关于dealloc
(deinit
)的序列,观察dealloc
的调用,其中deallocating
内部替换了原生的dealloc
方法从而达到监听dealloc
的调用 - 这里并不是交换方法,而是在
replacementImplementationGenerator
代码块中先保留了dealloc
的函数地址,再通过imp_implementationWithBlock
设置dealloc
的IMP
,指向了replacementImplementationGenerator
代码块 - 调用
dealloc
方法就会调用了代码块,在代码块内部通过body
函数调用了deallocating
方法,之后执行代码块中保留的原dealloc
函数