- Inception-v3
ImageNet数据集包含1500万张图片,22000个类别。
Google在大型图像数据库ImageNet上训练好的一个 CNN模型:Inception-v3 ,这个模型可以直接用来进行图像分类。Inception v3模型大约有2500万个参数,分类一张图像就用了50亿的乘加指令。采用谷歌已经训练好的模型,在个人电脑上可以快速完成图片分类。
- 下载Inception-v3 并 查看结构
import tensorflow as tf
import os
import tarfile
import requests
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# inception模型下载地址
inception_pretrain_model_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# 模型存放地址
inception_pretrain_model_dir = "inception_model"
if not os.path.exists(inception_pretrain_model_dir):
os.makedirs(inception_pretrain_model_dir)
# 获取文件名,以及文件路径
filename = inception_pretrain_model_url.split('/')[-1]
filepath = os.path.join(inception_pretrain_model_dir, filename)
# 下载模型
if not os.path.exists(filepath):
print("download: ", filename)
r = requests.get(inception_pretrain_model_url, stream=True)
with open(filepath, 'wb') as f:
for chunk in r.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
print("finish: ", filename)
# 解压文件
tarfile.open(filepath, 'r:gz').extractall(inception_pretrain_model_dir)
# 模型结构存放文件
log_dir = 'inception_log'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# classify_image_graph_def.pb为google训练好的模型
inception_graph_def_file = os.path.join(inception_pretrain_model_dir, 'classify_image_graph_def.pb')
with tf.Session() as sess:
# 创建一个图来存放google训练好的模型
with tf.gfile.GFile(inception_graph_def_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
# 保存图的结构
writer = tf.summary.FileWriter(log_dir, sess.graph)
writer.close()

下载解压,读取pb文件保存为结构图

查看图
- 使用Inception-v3做各种图像识别
import tensorflow as tf
import os
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class NodeLookup(object):
def __init__(self): # 类的初始化
label_lookup_path = 'inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'
uid_lookup_path = 'inception_model/imagenet_synset_to_human_label_map.txt'
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
# 加载分类字符串n********对应分类名称的文件
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
# 一行一行读取数据
for line in proto_as_ascii_lines:
# 去掉换行符
line = line.strip('\n')
# 按照'\t'分割
parsed_items = line.split('\t')
# 获取分类编号
uid = parsed_items[0]
# 获取分类名称
human_string = parsed_items[1]
# 保存编号字符串n********与分类名称映射关系
uid_to_human[uid] = human_string
# 加载分类字符串n********对应分类编号1-1000的文件
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
node_id_to_uid = {}
for line in proto_as_ascii:
if line.startswith(' target_class:'):
# 获取分类编号1-1000
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
# 获取编号字符串n********
target_class_string = line.split(': ')[1]
# 保存分类编号1-1000与编号字符串n********映射关系
node_id_to_uid[target_class] = target_class_string[1:-2]
# 建立分类编号1-1000对应分类名称的映射关系
node_id_to_name = {}
for key, val in node_id_to_uid.items():
# 获取分类名称
name = uid_to_human[val]
# 建立分类编号1-1000到分类名称的映射关系
node_id_to_name[key] = name
return node_id_to_name
# 传入分类编号1-1000返回分类名称
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
# 创建一个图来存放google训练好的模型
with tf.gfile.GFile('inception_model/classify_image_graph_def.pb', 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
# 遍历目录
for root, dirs, files in os.walk('images/'):
for file in files:
# 载入图片
image_data = tf.gfile.GFile(os.path.join(root, file), 'rb').read()
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) # 图片格式是jpg格式
predictions = np.squeeze(predictions) # 把结果转为1维数据
# 打印图片路径及名称
image_path = os.path.join(root, file)
print(image_path)
# 显示图片
img = Image.open(image_path)
plt.imshow(img)
plt.axis('off')
plt.show()
# 排序(取倒数5个值,然后再对着五个之值倒序)
top_k = predictions.argsort()[-5:][::-1]
node_lookup = NodeLookup()
for node_id in top_k:
# 获取分类名称
human_string = node_lookup.id_to_string(node_id)
# 获取该分类的置信度
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
print() # 换行
在代码同目录,新建一个images目录,放入图片

识别图片
运行结果:
images/cat.jpg
Egyptian cat (score = 0.26841)
tabby, tabby cat (score = 0.26439)
tiger cat (score = 0.10841)
paper towel (score = 0.01935)
window screen (score = 0.01144)
images/dog.jpg
dingo, warrigal, warragal, Canis dingo (score = 0.66988)
Eskimo dog, husky (score = 0.07884)
Siberian husky (score = 0.04236)
kelpie (score = 0.03799)
German shepherd, German shepherd dog, German police dog, alsatian (score = 0.01194)
images/ma.jpg
sorrel (score = 0.50042)
barrel, cask (score = 0.01471)
worm fence, snake fence, snake-rail fence, Virginia fence (score = 0.01373)
hartebeest (score = 0.01329)
Saluki, gazelle hound (score = 0.00933)
images/sea.jpg
seashore, coast, seacoast, sea-coast (score = 0.85161)
sandbar, sand bar (score = 0.09447)
lakeside, lakeshore (score = 0.02036)
promontory, headland, head, foreland (score = 0.00546)
catamaran (score = 0.00275)