目前你近几天如果初次运行cellchat,应该在运行到如下这几行命令会报错!!!
cellchat <- computeNetSimilarity(cellchat, type = "functional")
cellchat <- netEmbedding(cellchat, type = "functional")
#> Manifold learning of the signaling networks for a single dataset
cellchat <- netClustering(cellchat, type = "functional")
#> Classification learning of the signaling networks for a single dataset
# Visualization in 2D-space
netVisual_embedding(cellchat, type = "functional", label.size = 3.5)
报错如下,懂的都懂,不解释。
怎么报出的错呢?我们一步一步来看。
首先我们运行了这一步命令,想画出按照功能聚类的受配体图。
> cellchat <- netEmbedding(cellchat, type = "functional")
提示信息如下:
Manifold learning of the signaling networks for a single dataset
No non-system installation of Python could be found.
Would you like to download and install Miniconda?
Miniconda is an open source environment management system for Python.
See https://docs.conda.io/en/latest/miniconda.html for more details.
还会给你个选择的机会。
Would you like to install Miniconda? [Y/n]:
必须选Y呀。
当然如果你装过anaconda也可选N.
亲测可用。
然后开始一轮下载,大约跑过60cm长的l安装log日志吧。
* Downloading "https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe" ...
试开URL’https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe'
Content type 'application/octet-stream' length 59801432 bytes (57.0 MB)
downloaded 57.0 MB
* Installing Miniconda -- please wait a moment ...
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done
你就到了这里。
抱歉,又error了。
你需要安装umap-learn!!!
ok,我装!!!!
你可以打开命令行,使用pip install umap-learn安装,
当然有简单的办法,可以直接在Rstudio中使用安装reticulate: py_install(packages ='umap-learn')安装。
我有两台电脑,分别测试可行。
在运行这句命令终于不报错了。
那我运行下一步吧。
what,f, k???什么鬼!!!
对我一个生信小白来说这么多报错,有点过分了吧。我就想画个图而已呀。。。
查了github,有人问这个问题,然后作者建议他检查源码。。。源码是什么鬼???
我查了查,下面的是netClustering 背后的源码。
就像成功男人背后都有一个伟大 的女人,每个成功函数背后都有一堆伟大的源码!!!
netClustering <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, k = NULL, methods = "kmeans", do.plot = TRUE, fig.id = NULL, do.parallel = TRUE, nCores = 4, k.eigen = NULL) {
type <- match.arg(type)
if (object@options$mode == "single") {
comparison <- "single"
cat("Classification learning of the signaling networks for a single dataset", '\n')
} else if (object@options$mode == "merged") {
if (is.null(comparison)) {
comparison <- 1:length(unique(object@meta$datasets))
}
cat("Classification learning of the signaling networks for datasets", as.character(comparison), '\n')
}
comparison.name <- paste(comparison, collapse = "-")
Y <- methods::slot(object, slot.name)$similarity[[type]]$dr[[comparison.name]]
Y[is.na(Y)] <- 0
data.use <- Y
if (methods == "kmeans") {
if (!is.null(k)) {
clusters = kmeans(data.use,k,nstart=10)$cluster
} else {
N <- nrow(data.use)
kRange <- seq(2,min(N-1, 10),by = 1)
if (do.parallel) {
future::plan("multiprocess", workers = nCores)
options(future.globals.maxSize = 1000 * 1024^2)
}
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = pbapply::pbsapply,
no = future.apply::future_sapply
)
results = my.sapply(
X = 1:length(kRange),
FUN = function(x) {
idents <- kmeans(data.use,kRange[x],nstart=10)$cluster
clusIndex <- idents
#adjMat0 <- as.numeric(outer(clusIndex, clusIndex, FUN = "==")) - outer(1:N, 1:N, "==")
adjMat0 <- Matrix::Matrix(as.numeric(outer(clusIndex, clusIndex, FUN = "==")), nrow = N, ncol = N)
return(list(adjMat = adjMat0, ncluster = length(unique(idents))))
},
simplify = FALSE
)
adjMat <- lapply(results, "[[", 1)
CM <- Reduce('+', adjMat)/length(kRange)
res <- computeEigengap(as.matrix(CM))
numCluster <- res$upper_bound
clusters = kmeans(data.use,numCluster,nstart=10)$cluster
if (do.plot) {
gg <- res$gg.obj
ggsave(filename= paste0("estimationNumCluster_",fig.id,"_",type,"_dataset_",comparison.name,".pdf"), plot=gg, width = 3.5, height = 3, units = 'in', dpi = 300)
}
}
} else if (methods == "spectral") {
A <- as.matrix(data.use)
D <- apply(A, 1, sum)
L <- diag(D)-A # unnormalized version
L <- diag(D^-0.5)%*%L%*% diag(D^-0.5) # normalized version
evL <- eigen(L,symmetric=TRUE) # evL$values is decreasing sorted when symmetric=TRUE
# pick the first k first k eigenvectors (corresponding k smallest) as data points in spectral space
plot(rev(evL$values)[1:30])
Z <- evL$vectors[,(ncol(evL$vectors)-k.eigen+1):ncol(evL$vectors)]
clusters = kmeans(Z,k,nstart=20)$cluster
}
if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$group)) {
methods::slot(object, slot.name)$similarity[[type]]$group <- NULL
}
methods::slot(object, slot.name)$similarity[[type]]$group[[comparison.name]] <- clusters
return(object)
}
深感每个R包作者的辛苦与伟大!!!致敬!!
作者回复了我,可以先去pull request里面看看。他还没来得及更新。
什么是pull request我是不知道的,
但我在github找到了这个单词。
并顺坡下驴找到了这几句代码。
作为在生信技能树培训过的学员,这几句代码意思大概还是懂的。就是说把NA改成0,避免报错。
我复制进去依然报错,
comparison not found!!!
找不到对象!!!
我知道是这个变量没定义。但是作为我刚运行了一遍代码,连每个图是啥意思还没得及看的小白。我哪里去找对象呢?》
我发现这有几个上下箭头,全部点开发现了另一片天地,
这有2000多行代码。!!!
我对比了这里的代码和作者的源代码,发现了一些不同点!!!
这里是有comparison的定义的!!!
于是我顺藤摸瓜!!!
先运行一个这里的源代码函数,再运行一遍外面的代码终于搞定!!
流程如下:
分别运行下面函数 替代原文3个函数
运行源码1:
computeNetSimilarity <- function(object, slot.name = "netP", type = c("functional","structural"), k = NULL, thresh = NULL) {
type <- match.arg(type)
prob = methods::slot(object, slot.name)$prob
if (is.null(k)) {
if (dim(prob)[3] <= 25) {
k <- ceiling(sqrt(dim(prob)[3]))
} else {
k <- ceiling(sqrt(dim(prob)[3])) + 1
}
}
if (!is.null(thresh)) {
prob[prob < quantile(c(prob[prob != 0]), thresh)] <- 0
}
if (type == "functional") {
# compute the functional similarity
D_signalings <- matrix(0, nrow = dim(prob)[3], ncol = dim(prob)[3])
S2 <- D_signalings; S3 <- D_signalings;
for (i in 1:(dim(prob)[3]-1)) {
for (j in (i+1):dim(prob)[3]) {
Gi <- (prob[ , ,i] > 0)*1
Gj <- (prob[ , ,j] > 0)*1
S3[i,j] <- sum(Gi * Gj)/sum(Gi+Gj-Gi*Gj,na.rm=TRUE)
}
}
# define the similarity matrix
S3[is.na(S3)] <- 0; S3 <- S3 + t(S3); diag(S3) <- 1
# S_signalings <- S1 *S2
S_signalings <- S3
} else if (type == "structural") {
# compute the structure distance
D_signalings <- matrix(0, nrow = dim(prob)[3], ncol = dim(prob)[3])
for (i in 1:(dim(prob)[3]-1)) {
for (j in (i+1):dim(prob)[3]) {
Gi <- (prob[ , ,i] > 0)*1
Gj <- (prob[ , ,j] > 0)*1
D_signalings[i,j] <- computeNetD_structure(Gi,Gj)
}
}
# define the structure similarity matrix
D_signalings[is.infinite(D_signalings)] <- 0
D_signalings[is.na(D_signalings)] <- 0
D_signalings <- D_signalings + t(D_signalings)
S_signalings <- 1-D_signalings
}
# smooth the similarity matrix using SNN
SNN <- buildSNN(S_signalings, k = k, prune.SNN = 1/15)
Similarity <- as.matrix(S_signalings*SNN)
rownames(Similarity) <- dimnames(prob)[[3]]
colnames(Similarity) <- dimnames(prob)[[3]]
comparison <- "single"
comparison.name <- paste(comparison, collapse = "-")
if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$matrix)) {
methods::slot(object, slot.name)$similarity[[type]]$matrix <- NULL
}
methods::slot(object, slot.name)$similarity[[type]]$matrix[[comparison.name]] <- Similarity
return(object)
}
#' Compute signaling network similarity for any pair of datasets
#'
#' @param object A merged CellChat object
#' @param slot.name the slot name of object that is used to compute centrality measures of signaling networks
#' @param type "functional","structural"
#' @param comparison a numerical vector giving the datasets for comparison
#' @param k the number of nearest neighbors
#' @param thresh the fraction (0 to 0.25) of interactions to be trimmed before computing network similarity
#' @importFrom methods slot
#'
#' @return
#' @export
#'
computeNetSimilarityPairwise <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, k = NULL, thresh = NULL) {
type <- match.arg(type)
if (is.null(comparison)) {
comparison <- 1:length(unique(object@meta$datasets))
}
cat("Compute signaling network similarity for datasets", as.character(comparison), '\n')
comparison.name <- paste(comparison, collapse = "-")
net <- list()
signalingAll <- c()
object.net.nameAll <- c()
# 1:length(setdiff(names(methods::slot(object, slot.name)), "similarity"))
for (i in 1:length(comparison)) {
object.net <- methods::slot(object, slot.name)[[comparison[i]]]
object.net.name <- names(methods::slot(object, slot.name))[comparison[i]]
object.net.nameAll <- c(object.net.nameAll, object.net.name)
net[[i]] = object.net$prob
signalingAll <- c(signalingAll, paste0(dimnames(net[[i]])[[3]], "--", object.net.name))
# signalingAll <- c(signalingAll, dimnames(net[[i]])[[3]])
}
names(net) <- object.net.nameAll
net.dim <- sapply(net, dim)[3,]
nnet <- sum(net.dim)
position <- cumsum(net.dim); position <- c(0,position)
if (is.null(k)) {
if (nnet <= 25) {
k <- ceiling(sqrt(nnet))
} else {
k <- ceiling(sqrt(nnet)) + 1
}
}
if (!is.null(thresh)) {
for (i in 1:length(net)) {
neti <- net[[i]]
neti[neti < quantile(c(neti[neti != 0]), thresh)] <- 0
net[[i]] <- neti
}
}
if (type == "functional") {
# compute the functional similarity
S3 <- matrix(0, nrow = nnet, ncol = nnet)
for (i in 1:nnet) {
for (j in 1:nnet) {
idx.i <- which(position - i >= 0)[1]
idx.j <- which(position - j >= 0)[1]
net.i <- net[[idx.i-1]]
net.j <- net[[idx.j-1]]
Gi <- (net.i[ , ,i-position[idx.i-1]] > 0)*1
Gj <- (net.j[ , ,j-position[idx.j-1]] > 0)*1
S3[i,j] <- sum(Gi * Gj)/sum(Gi+Gj-Gi*Gj,na.rm=TRUE)
}
}
# define the similarity matrix
S3[is.na(S3)] <- 0; diag(S3) <- 1
S_signalings <- S3
} else if (type == "structural") {
# compute the structure distance
D_signalings <- matrix(0, nrow = nnet, ncol = nnet)
for (i in 1:nnet) {
for (j in 1:nnet) {
idx.i <- which(position - i >= 0)[1]
idx.j <- which(position - j >= 0)[1]
net.i <- net[[idx.i-1]]
net.j <- net[[idx.j-1]]
Gi <- (net.i[ , ,i-position[idx.i-1]] > 0)*1
Gj <- (net.j[ , ,j-position[idx.j-1]] > 0)*1
D_signalings[i,j] <- computeNetD_structure(Gi,Gj)
}
}
# define the structure similarity matrix
D_signalings[is.infinite(D_signalings)] <- 0
D_signalings[is.na(D_signalings)] <- 0
S_signalings <- 1-D_signalings
}
# smooth the similarity matrix using SNN
SNN <- buildSNN(S_signalings, k = k, prune.SNN = 1/15)
Similarity <- as.matrix(S_signalings*SNN)
rownames(Similarity) <- signalingAll
colnames(Similarity) <- rownames(Similarity)
if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$matrix)) {
methods::slot(object, slot.name)$similarity[[type]]$matrix <- NULL
}
# methods::slot(object, slot.name)$similarity[[type]]$matrix <- Similarity
methods::slot(object, slot.name)$similarity[[type]]$matrix[[comparison.name]] <- Similarity
return(object)
}
#' Manifold learning of the signaling networks based on their similarity
#'
#' @param object CellChat object
#' @param slot.name the slot name of object that is used to compute centrality measures of signaling networks
#' @param type "functional","structural"
#' @param comparison a numerical vector giving the datasets for comparison. No need to define for a single dataset. Default are all datasets when object is a merged object
#' @param k the number of nearest neighbors in running umap
#' @param pathway.remove a range of the number of patterns
#' @importFrom methods slot
#' @return
#' @export
#'
#' @examples
#'
#'
#'
#'
#'
#'
#'
运行函数1:
cellchat <- computeNetSimilarity(cellchat, type = "functional")
运行源码2
netEmbedding <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, pathway.remove = NULL, k = NULL) {
if (object@options$mode == "single") {
comparison <- "single"
cat("Manifold learning of the signaling networks for a single dataset", '\n')
} else if (object@options$mode == "merged") {
if (is.null(comparison)) {
comparison <- 1:length(unique(object@meta$datasets))
}
cat("Manifold learning of the signaling networks for datasets", as.character(comparison), '\n')
}
comparison.name <- paste(comparison, collapse = "-")
Similarity <- methods::slot(object, slot.name)$similarity[[type]]$matrix[[comparison.name]]
if (is.null(pathway.remove)) {
pathway.remove <- rownames(Similarity)[which(colSums(Similarity) == 1)]
}
if (length(pathway.remove) > 0) {
pathway.remove.idx <- which(rownames(Similarity) %in% pathway.remove)
Similarity <- Similarity[-pathway.remove.idx, -pathway.remove.idx]
}
if (is.null(k)) {
k <- ceiling(sqrt(dim(Similarity)[1])) + 1
}
options(warn = -1)
# dimension reduction
Y <- runUMAP(Similarity, min.dist = 0.3, n.neighbors = k)
if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$dr)) {
methods::slot(object, slot.name)$similarity[[type]]$dr <- NULL
}
methods::slot(object, slot.name)$similarity[[type]]$dr[[comparison.name]] <- Y
return(object)
}
#' Classification learning of the signaling networks
#'
#' @param object CellChat object
#' @param slot.name the slot name of object that is used to compute centrality measures of signaling networks
#' @param type "functional","structural"
#' @param comparison a numerical vector giving the datasets for comparison. No need to define for a single dataset. Default are all datasets when object is a merged object
#' @param k the number of signaling groups when running kmeans
#' @param methods the methods for clustering: "kmeans" or "spectral"
#' @param do.plot whether showing the eigenspectrum for inferring number of clusters; Default will save the plot
#' @param fig.id add a unique figure id when saving the plot
#' @param do.parallel whether doing parallel when inferring the number of signaling groups when running kmeans
#' @param nCores number of workers when doing parallel
#' @param k.eigen the number of eigenvalues used when doing spectral clustering
#' @importFrom methods slot
#' @importFrom future nbrOfWorkers plan
#' @importFrom future.apply future_sapply
#' @importFrom pbapply pbsapply
#' @return
#' @export
#'
#' @examples
运行函数2
cellchat <- netEmbedding(cellchat, type = "functional")
运行源码3
netClustering <- function(object, slot.name = "netP", type = c("functional","structural"), comparison = NULL, k = NULL, methods = "kmeans", do.plot = TRUE, fig.id = NULL, do.parallel = TRUE, nCores = 4, k.eigen = NULL) {
type <- match.arg(type)
if (object@options$mode == "single") {
comparison <- "single"
cat("Classification learning of the signaling networks for a single dataset", '\n')
} else if (object@options$mode == "merged") {
if (is.null(comparison)) {
comparison <- 1:length(unique(object@meta$datasets))
}
cat("Classification learning of the signaling networks for datasets", as.character(comparison), '\n')
}
comparison.name <- paste(comparison, collapse = "-")
Y <- methods::slot(object, slot.name)$similarity[[type]]$dr[[comparison.name]]
Y[is.na(Y)] <- 0
data.use <- Y
if (methods == "kmeans") {
if (!is.null(k)) {
clusters = kmeans(data.use,k,nstart=10)$cluster
} else {
N <- nrow(data.use)
kRange <- seq(2,min(N-1, 10),by = 1)
if (do.parallel) {
future::plan("multiprocess", workers = nCores)
options(future.globals.maxSize = 1000 * 1024^2)
}
my.sapply <- ifelse(
test = future::nbrOfWorkers() == 1,
yes = pbapply::pbsapply,
no = future.apply::future_sapply
)
results = my.sapply(
X = 1:length(kRange),
FUN = function(x) {
idents <- kmeans(data.use,kRange[x],nstart=10)$cluster
clusIndex <- idents
#adjMat0 <- as.numeric(outer(clusIndex, clusIndex, FUN = "==")) - outer(1:N, 1:N, "==")
adjMat0 <- Matrix::Matrix(as.numeric(outer(clusIndex, clusIndex, FUN = "==")), nrow = N, ncol = N)
return(list(adjMat = adjMat0, ncluster = length(unique(idents))))
},
simplify = FALSE
)
adjMat <- lapply(results, "[[", 1)
CM <- Reduce('+', adjMat)/length(kRange)
res <- computeEigengap(as.matrix(CM))
numCluster <- res$upper_bound
clusters = kmeans(data.use,numCluster,nstart=10)$cluster
if (do.plot) {
gg <- res$gg.obj
ggsave(filename= paste0("estimationNumCluster_",fig.id,"_",type,"_dataset_",comparison.name,".pdf"), plot=gg, width = 3.5, height = 3, units = 'in', dpi = 300)
}
}
} else if (methods == "spectral") {
A <- as.matrix(data.use)
D <- apply(A, 1, sum)
L <- diag(D)-A # unnormalized version
L <- diag(D^-0.5)%*%L%*% diag(D^-0.5) # normalized version
evL <- eigen(L,symmetric=TRUE) # evL$values is decreasing sorted when symmetric=TRUE
# pick the first k first k eigenvectors (corresponding k smallest) as data points in spectral space
plot(rev(evL$values)[1:30])
Z <- evL$vectors[,(ncol(evL$vectors)-k.eigen+1):ncol(evL$vectors)]
clusters = kmeans(Z,k,nstart=20)$cluster
}
if (!is.list(methods::slot(object, slot.name)$similarity[[type]]$group)) {
methods::slot(object, slot.name)$similarity[[type]]$group <- NULL
}
methods::slot(object, slot.name)$similarity[[type]]$group[[comparison.name]] <- clusters
return(object)
}
运行函数3
cellchat <- netClustering(cellchat, type = "functional")
最后运行
netVisual_embedding(cellchat, type = "functional", label.size = 3.5)
出图如下
大功告成!!!
方法很笨,但行之有效!或许写成函数包装,但是对我来说能用就行,就这!!
希望能帮到大家解燃眉之急!!!希望作者早日更新,让我们这些小白少走些弯路!