MapReduce工作流程

MapReduce如何工作:

MapReduce程序的工作分两个阶段进行:
Map阶段
Reduce 阶段
输入到每一个阶段均是键 - 值对。此外,每一个程序员需要指定两个函数:map函数和reduce函数,整个过程要经历三个阶段执行。

MapReduce工作过程.png

这些数据经过以下几个阶段
1、输入拆分:
输入到MapReduce工作被划分成固定大小的块叫做 input splits ,输入折分是由单个映射消费输入块。
2、映射 - Mapping
这是在 map-reduce 程序执行的第一个阶段。在这个阶段中的每个分割的数据被传递给映射函数来产生输出值。在我们的例子中,映射阶段的任务是计算输入分割出现每个单词的数量(更多详细信息有关输入分割在下面给出)并编制以某一形式列表<单词,出现频率>
3、重排
这个阶段消耗映射阶段的输出。它的任务是合并映射阶段输出的相关记录。在我们的例子,同样的词汇以及它们各自出现频率。
4、Reducing
在这一阶段,从重排阶段输出值汇总。这个阶段结合来自重排阶段值,并返回一个输出值。总之,这一阶段汇总了完整的数据集。
在我们的例子中,这个阶段汇总来自重排阶段的值,计算每个单词出现次数的总和。

详细的整个过程

映射的任务是为每个分割创建在分割每条记录执行映射的函数。
有多个分割是好处的, 因为处理一个分割使用的时间相比整个输入的处理的时间要少, 当分割比较小时,处理负载平衡是比较好的,因为我们正在并行地处理分割。
然而,也不希望分割的规模太小。当分割太小,管理分割和映射创建任务的超负荷开始逐步控制总的作业执行时间。
对于大多数作业,最好是分割成大小等于一个HDFS块的大小(这是64 MB,默认情况下)。
map任务执行结果到输出写入到本地磁盘的各个节点上,而不是HDFS。
之所以选择本地磁盘而不是HDFS是因为,避免复制其中发生 HDFS 存储操作。
映射输出是由减少任务处理以产生最终的输出中间输出。
一旦任务完成,映射输出可以扔掉了。所以,复制并将其存储在HDFS变得大材小用。
在节点故障的映射输出之前,由 reduce 任务消耗,Hadoop 重新运行另一个节点在映射上的任务,并重新创建的映射输出。
减少任务不会在数据局部性的概念上工作。每个map任务的输出被供给到 reduce 任务。映射输出被传输至计算机,其中 reduce 任务正在运行。
在此机器输出合并,然后传递到用户定义的 reduce 函数。
不像到映射输出,reduce输出存储在HDFS(第一个副本被存储在本地节点上,其他副本被存储于偏离机架的节点)。因此,写入 reduce 输出

MapReduce如何组织工作:
Hadoop 划分工作为任务。有两种类型的任务:
Map 任务 (分割及映射)
Reduce 任务 (重排,还原)
完整的执行流程(执行 Map 和 Reduce 任务)是由两种类型的实体的控制,称为
Jobtracker : 就像一个主(负责提交的作业完全执行)
多任务跟踪器 : 充当角色就像从机,它们每个执行工作
对于每一项工作提交执行在系统中,有一个 JobTracker 驻留在 Namenode 和 Datanode 驻留多个 TaskTracker。


1、作业被分成多个任务,然后运行到集群中的多个数据节点。
2、JobTracker的责任是协调活动调度任务来在不同的数据节点上运行。
3、单个任务的执行,然后由 TaskTracker 处理,它位于执行工作的一部分,在每个数据节点上。
4、TaskTracker 的责任是发送进度报告到JobTracker。
5、此外,TaskTracker 周期性地发送“心跳”信号信息给 JobTracker 以便通知系统它的当前状态。
6、这样 JobTracker 就可以跟踪每项工作的总体进度。在任务失败的情况下,JobTracker 可以在不同的 TaskTracker 重新调度它。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容