TensorFlow Lite for Android 初探(附demo)

一. TensorFlow Lite

TensorFlow Lite介绍.jpeg
TensorFlow Lite特性.jpeg
TensorFlow Lite使用.jpeg

TensorFlow Lite 是用于移动设备和嵌入式设备的轻量级解决方案。TensorFlow Lite 支持 Android、iOS 甚至树莓派等多种平台。

我们知道大多数的 AI 是在云端运算的,但是在移动端使用 AI 具有无网络延迟、响应更加及时、数据隐私等特性。

对于离线的场合,云端的 AI 就无法使用了,而此时可以在移动设备中使用 TensorFlow Lite。

二. tflite 格式

TensorFlow 生成的模型是无法直接给移动端使用的,需要离线转换成.tflite文件格式。

tflite 存储格式是 flatbuffers。

FlatBuffers 是由Google开源的一个免费软件库,用于实现序列化格式。它类似于Protocol Buffers、Thrift、Apache Avro。

因此,如果要给移动端使用的话,必须把 TensorFlow 训练好的 protobuf 模型文件转换成 FlatBuffers 格式。官方提供了 toco 来实现模型格式的转换。

三. 常用的 Java API

TensorFlow Lite 提供了 C ++ 和 Java 两种类型的 API。无论哪种 API 都需要加载模型和运行模型。

而 TensorFlow Lite 的 Java API 使用了 Interpreter 类(解释器)来完成加载模型和运行模型的任务。后面的例子会看到如何使用 Interpreter。

四. TensorFlow Lite + mnist 数据集实现识别手写数字

mnist 是手写数字图片数据集,包含60000张训练样本和10000张测试样本。
测试集也是同样比例的手写数字数据。每张图片有28x28个像素点构成,每个像素点用一个灰度值表示,这里是将28x28的像素展开为一个一维的行向量(每行784个值)。

mnist 数据集获取地址:http://yann.lecun.com/exdb/mnist/

下面的 demo 中已经包含了 mnist.tflite 模型文件。(如果没有的话,需要自己训练保存成pb文件,再转换成tflite 格式)

对于一个识别类,首先需要初始化 TensorFlow Lite 解释器,以及输入、输出。

    // The tensorflow lite file
    private lateinit var tflite: Interpreter

    // Input byte buffer
    private lateinit var inputBuffer: ByteBuffer

    // Output array [batch_size, 10]
    private lateinit var mnistOutput: Array<FloatArray>

    init {

        try {
            tflite = Interpreter(loadModelFile(activity))

            inputBuffer = ByteBuffer.allocateDirect(
                    BYTE_SIZE_OF_FLOAT * DIM_BATCH_SIZE * DIM_IMG_SIZE_X * DIM_IMG_SIZE_Y * DIM_PIXEL_SIZE)
            inputBuffer.order(ByteOrder.nativeOrder())
            mnistOutput = Array(DIM_BATCH_SIZE) { FloatArray(NUMBER_LENGTH) }
            Log.d(TAG, "Created a Tensorflow Lite MNIST Classifier.")
        } catch (e: IOException) {
            Log.e(TAG, "IOException loading the tflite file failed.")
        }

    }

从 asserts 文件中加载 mnist.tflite 模型:

    /**
     * Load the model file from the assets folder
     */
    @Throws(IOException::class)
    private fun loadModelFile(activity: Activity): MappedByteBuffer {

        val fileDescriptor = activity.assets.openFd(MODEL_PATH)
        val inputStream = FileInputStream(fileDescriptor.fileDescriptor)
        val fileChannel = inputStream.channel
        val startOffset = fileDescriptor.startOffset
        val declaredLength = fileDescriptor.declaredLength
        return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength)
    }

真正识别手写数字是在 classify() 方法:

val digit = mnistClassifier.classify(Bitmap.createScaledBitmap(paintView.bitmap, PIXEL_WIDTH, PIXEL_WIDTH, false))

classify() 方法包含了预处理用于初始化 inputBuffer、运行 mnist 模型、识别出数字。

    /**
     * Classifies the number with the mnist model.
     *
     * @param bitmap
     * @return the identified number
     */
    fun classify(bitmap: Bitmap): Int {

        if (tflite == null) {
            Log.e(TAG, "Image classifier has not been initialized; Skipped.")
        }

        preProcess(bitmap)
        runModel()
        return postProcess()
    }

    /**
     * Converts it into the Byte Buffer to feed into the model
     *
     * @param bitmap
     */
    private fun preProcess(bitmap: Bitmap?) {

        if (bitmap == null || inputBuffer == null) {
            return
        }

        // Reset the image data
        inputBuffer.rewind()

        val width = bitmap.width
        val height = bitmap.height

        // The bitmap shape should be 28 x 28
        val pixels = IntArray(width * height)
        bitmap.getPixels(pixels, 0, width, 0, 0, width, height)

        for (i in pixels.indices) {
            // Set 0 for white and 255 for black pixels
            val pixel = pixels[i]
            // The color of the input is black so the blue channel will be 0xFF.
            val channel = pixel and 0xff
            inputBuffer.putFloat((0xff - channel).toFloat())
        }
    }

    /**
     * Run the TFLite model
     */
    private fun runModel() = tflite.run(inputBuffer, mnistOutput)

    /**
     * Go through the output and find the number that was identified.
     *
     * @return the number that was identified (returns -1 if one wasn't found)
     */
    private fun postProcess(): Int {

        for (i in 0 until mnistOutput[0].size) {
            val value = mnistOutput[0][i]
            if (value == 1f) {
                return i
            }
        }

        return -1
    }

对于 Android 有一个地方需要注意,必须在 app 模块的 build.gradle 中添加如下的语句,否则无法加载模型。

android {
    ......
    aaptOptions {
        noCompress "tflite"
    }
}

demo 运行效果如下:

识别手写数字5.png
识别手写数字7.png

五. 总结

本文只是 TF Lite 的初探,很多细节并没有详细阐述。应该会在未来的文章中详细介绍。

本文 demo 的 github 地址:https://github.com/fengzhizi715/TFLite-MnistDemo

当然,也可以跑一下官方的例子:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/examples/android/app

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容