【PyTorch深度学习项目实战100例】—— 基于pytorch使用LSTM进行文本情感分析 | 第7例

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、使用LSTM进行文本情感分析

本项目是使用LSTM进行文本情感分析,针对数据为购物评价信息,可以判断出语料所含情感的积极性,实现思路就是针对评价进行二分类,也就是简单的指出评价是正面的还是负面的。

在这里插入图片描述

二、数据集介绍

本项目中使用的数据是电商网站中某个商品的评论,该数据集的下载网址为:下载链接 ,该数据集一共有4310条评论数据,文本的情感分为两类:“正面”和“反面”,该数据集的前几行如下:

在这里插入图片描述

三、项目实现思路

本项目使用的是LSTM,如果使用普通MLP网络依然可以实现二分类,但是对于文本信息,他不同词之间是存在语义关系的,并不是独立的,每个词会受语境及上下文所影响,如果使用传统模型是捕捉不到这层关系。
所以考虑使用循环神经网络,可以将不同时间步的数据向下进行传递,将上文语境信息向后传入进行分析。

在这里插入图片描述

四、加载文本数据

由于数据集中是每一个样本为一句话,这样是不可以进行训练的,所以需要将其转化为数值信息。

  1. 首先需要获得词汇表,就是训练样本中所有出现的字
  2. 然后将其转化为字典,键为字,值为对应的编号,用于进行映射
  3. 将每一句话进行映射形成对应的数值编号
  4. 如果每一行的字数不够input_shape,那么就使用0进行填补,保持送入网络模型中的数据的维度是一致的
# 加载文本数据 
def load_data(file_path, input_shape=20):
    df = pd.read_csv(file_path)

    # 标签及词汇表
    labels, vocabulary = list(df['label'].unique()), list(df['evaluation'].unique())

    # 构造字符级别的特征
    string = ''
    for word in vocabulary:
        string += word
    
    # 所有的词汇表
    vocabulary = set(string)

    # word2idx 将字映射为索引
    word_dictionary = {word: i + 1 for i, word in enumerate(vocabulary)}
    with open('word_dict.pk', 'wb') as f:
        pickle.dump(word_dictionary, f)
    # idx2word 将索引映射为字
    inverse_word_dictionary = {i + 1: word for i, word in enumerate(vocabulary)}
    # label2idx 将正反面映射为0和1
    label_dictionary = {label: i for i, label in enumerate(labels)}
    with open('label_dict.pk', 'wb') as f:
        pickle.dump(label_dictionary, f)
    # idx2label 将0和1映射为正反面
    output_dictionary = {i: labels for i, labels in enumerate(labels)}
    
    # 训练数据中所有词的个数
    vocab_size = len(word_dictionary.keys())  # 词汇表大小
    # 标签类别,分别为正、反面
    label_size = len(label_dictionary.keys())  # 标签类别数量

    # 序列填充,按input_shape填充,长度不足的按0补充
    # 将一句话映射成对应的索引 [0,24,63...]
    x = [[word_dictionary[word] for word in sent] for sent in df['evaluation']]
    # 如果长度不够input_shape,使用0进行填充
    x = pad_sequences(maxlen=input_shape, sequences=x, padding='post', value=0)
    # 形成标签0和1
    y = [[label_dictionary[sent]] for sent in df['label']]
    #     y = [np_utils.to_categorical(label, num_classes=label_size) for label in y]
    y = np.array(y)

    return x, y, output_dictionary, vocab_size, label_size, inverse_word_dictionary

五、定义网络结构

项目中使用的模型是LSTM,在模型中我们定义了三个组件,分别是embedding层lstm层全连接层

  • Embedding层:将每个词生成对应的嵌入向量,就是利用一个连续型向量来表示每个词
  • Lstm层:提取语句中的语义信息
  • Linear层:将结果映射成2大小用于二分类,即正反面的概率

注意:在LSTM网络中返回的值为最后一个时间片的输出,而不是将整个output全部输出,因为我们是需要捕捉整个语句的语义信息,并不是获得特定时间片的数据。

六、模型训练

# 6.模型训练
model = LSTM(vocab_size=len(inverse_word_dictionary), hidden_dim=hidden_dim, num_layers=num_layers,
             embedding_dim=embedding_dim, output_dim=output_dim)

Configimizer = optim.Adam(model.parameters(), lr=lr) # 优化器
criterion = nn.CrossEntropyLoss() # 多分类损失函数

model.to(device)
loss_meter = meter.AverageValueMeter()

best_acc = 0 # 保存最好准确率
best_model = None # 保存对应最好准确率的模型参数

for epoch in range(epochs):
    model.train() # 开启训练模式
    epoch_acc = 0 # 每个epoch的准确率
    epoch_acc_count = 0 # 每个epoch训练的样本数
    train_count = 0 # 用于计算总的样本数,方便求准确率
    loss_meter.reset()
    
    train_bar = tqdm(train_loader)  # 形成进度条
    for data in train_bar:
        x_train, y_train = data  # 解包迭代器中的X和Y

        x_input = x_train.long().transpose(1, 0).contiguous()
        x_input = x_input.to(device)
        Configimizer.zero_grad()
        
        # 形成预测结果
        output_ = model(x_input)
        
        # 计算损失
        loss = criterion(output_, y_train.long().view(-1))
        loss.backward()
        Configimizer.step()
        
        loss_meter.add(loss.item())
        
        # 计算每个epoch正确的个数
        epoch_acc_count += (output_.argmax(axis=1) == y_train.view(-1)).sum()
        train_count += len(x_train)
        
    # 每个epoch对应的准确率
    epoch_acc = epoch_acc_count / train_count
    
    # 打印信息
    print("【EPOCH: 】%s" % str(epoch + 1))
    print("训练损失为%s" % (str(loss_meter.mean)))
    print("训练精度为%s" % (str(epoch_acc.item() * 100)[:5]) + '%')

    # 保存模型及相关信息
    if epoch_acc > best_acc:
        best_acc = epoch_acc
        best_model = model.state_dict()
    
    # 在训练结束保存最优的模型参数
    if epoch == epochs - 1:
        # 保存模型
        torch.save(best_model, './best_model.pkl')

七、语句测试

实现规定好input_shape,如果不够使用0进行填补,方便送入网络当中。
读取模型以及相应的词序号映射信息,然后将我们待测试的话转成相应的tensor,送入网络中,然后的tensor为2维,即对应正面和反面的概率,然后使用argmax函数获得最大值对应的索引。

完整源码

【PyTorch深度学习项目实战100例】—— 基于pytorch使用LSTM进行文本情感分析 | 第7例_咕 嘟的博客-CSDN博客_pytorchlstm中文文本情感分析

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容