Flink On Yarn 模式部署提交

Flink On Yarn 模式部署提交

一、环境准备

Ubuntu

hadoop 2.6.0(官网下载)

Flink 1.12.2

jdk 8

二、Hadoop 完全分布式-yarn配置

  1. 永久关闭防火墙

  2. 修改主机名

    vim /etc/hosts

    192.168.73.130 hadoop01

  3. 修改环境变量

    export JAVA_HOME=/usr/lib/jdk export HADOOP_HOME=/home/ad/hadoop-2.6.0 export HADOOP_PREFIX=HADOOP_HOME export FLINK_HOME=/usr/lib/flink export HADOOP_CLASSPATH=`{HADOOP_HOME}/bin/hadoop classpath` export PATH=PATH:JAVA_HOME/bin:HADOOP_HOME/bin:HADOOP_HOME/sbin:$FLINK_HOME/bin

    环境变量生效

    $ source /etc/profile

    验证

    $ hadoop version

    Hadoop 2.6.0 Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r e3496499ecb8d220fba99dc5ed4c99c8f9e33bb1 Compiled by jenkins on 2014-11-13T21:10Z Compiled with protoc 2.5.0 From source with checksum 18e43357c8f927c0695f1e9522859d6a This command was run using /home/ad/hadoop-2.6.0/share/hadoop/common/hadoop-common-2.6.0.jar

  4. SSH免密登录

  5. 修改配置文件

core-site.xml

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop01:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop/tmp</value>
</property>
</configuration>

hadoop-env.sh mapred-env.sh yarn-env.sh

修改$JAVA_HOME 路径

hdfs-site.xml

<configuration>
<property>

<name>dfs.replication</name>
<value>1</value> </property>
</configuration>

yarn-site.xml

<configuration>


<property>

<name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop01</value>
</property>
</configuration>

cp mapred-site.xml.templat mapred-site.xml

<configuration>

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

slaves

hadoop01

  1. hadoop01上格式化

hadoop namenode -format

  1. 启动hadoop集群

$ start-all.sh

This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh Starting namenodes on [hadoop01] hadoop01: starting namenode, logging to /home/ad/hadoop-2.6.0/logs/hadoop-root-namenode-ad-virtual-machine.out hadoop01: starting datanode, logging to /home/ad/hadoop-2.6.0/logs/hadoop-root-datanode-ad-virtual-machine.out Starting secondary namenodes [0.0.0.0] 0.0.0.0: starting secondarynamenode, logging to /home/ad/hadoop-2.6.0/logs/hadoop-root-secondarynamenode-ad-virtual-machine.out starting yarn daemons starting resourcemanager, logging to /home/ad/hadoop-2.6.0/logs/yarn-root-resourcemanager-ad-virtual-machine.out hadoop01: starting nodemanager, logging to /home/ad/hadoop-2.6.0/logs/yarn-root-nodemanager-ad-virtual-machine.out

  1. 访问hadoop01:8080
image-20210814105855230.png

三、验证hadoop yarn

创建HDFS数据目录

创建一个目录,用于保存MapReduce任务的输入文件:
hadoop fs -mkdir -p /data/wordcount1

创建一个目录,用于保存MapReduce任务的输出文件:

hadoop fs -mkdir /output1

查看刚刚创建的两个目录:

hadoop fs -ls /
drwxr-xr-x - root supergroup 0 2017-09-01 20:34 /data
drwxr-xr-x - root supergroup 0 2017-09-01 20:35 /output1

(3)创建一个单词文件,并上传到HDFS

创建的单词文件如下:

cat myword.txt
leaf yyh
yyh xpleaf
katy ling
yeyonghao leaf
xpleaf katy1.2.3.4.5.6.</pre>

上传该文件到HDFS中:

hadoop fs -put myword.txt /data/wordcount1

在HDFS中查看刚刚上传的文件及内容:

hadoop fs -ls /data/wordcount
-rw-r--r-- 1 root supergroup 57 2017-09-01 20:40 /data/wordcount/myword.txt
hadoop fs -cat /data/wordcount/myword.txt
leaf yyh
yyh xpleaf
katy ling
yeyonghao leaf
xpleaf katy1.2.3.4.5.6.7.8.</pre>

(4)运行wordcount程序

执行如下命令:

登录后复制

hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount /data/wordcount /output/wordcount

...
17/09/01 20:48:14 INFO mapreduce.Job: Job job_local1719603087_0001 completed successfully
17/09/01 20:48:14 INFO mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=585940
FILE: Number of bytes written=1099502
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=114
HDFS: Number of bytes written=48
HDFS: Number of read operations=15
HDFS: Number of large read operations=0
HDFS: Number of write operations=4
Map-Reduce Framework
Map input records=5
Map output records=10
Map output bytes=97
Map output materialized bytes=78
Input split bytes=112
Combine input records=10
Combine output records=6
Reduce input groups=6
Reduce shuffle bytes=78
Reduce input records=6
Reduce output records=6
Spilled Records=12
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=92
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=241049600
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=57
File Output Format Counters
Bytes Written=48</pre>

三、Flink on yarn环境搭建

  1. Flink Session

  2. Flink Per-job

$./bin/flink run -m yarn-cluster ./examples/batch/WordCount.jar

SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/ad/flink/flink-1.12.2/lib/log4j-slf4j-impl-2.12.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/home/ad/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Executing WordCount example with default input data set. Use --input to specify file input. Printing result to stdout. Use --output to specify output path. 2021-08-14 11:17:35,074 WARN org.apache.flink.yarn.configuration.YarnLogConfigUtil [] - The configuration directory ('/home/ad/flink/flink-1.12.2/conf') already contains a LOG4J config file.If you want to use logback, then please delete or rename the log configuration file. 2021-08-14 11:17:35,122 INFO org.apache.hadoop.yarn.client.RMProxy [] - Connecting to ResourceManager at hadoop01/192.168.73.130:8032 2021-08-14 11:17:35,238 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar 2021-08-14 11:17:35,339 WARN org.apache.flink.yarn.YarnClusterDescriptor [] - Neither the HADOOP_CONF_DIR nor the YARN_CONF_DIR environment variable is set. The Flink YARN Client needs one of these to be set to properly load the Hadoop configuration for accessing YARN. 2021-08-14 11:17:35,372 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - The configured JobManager memory is 1600 MB. YARN will allocate 2048 MB to make up an integer multiple of its minimum allocation memory (1024 MB, configured via 'yarn.scheduler.minimum-allocation-mb'). The extra 448 MB may not be used by Flink. 2021-08-14 11:17:35,373 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - The configured TaskManager memory is 1728 MB. YARN will allocate 2048 MB to make up an integer multiple of its minimum allocation memory (1024 MB, configured via 'yarn.scheduler.minimum-allocation-mb'). The extra 320 MB may not be used by Flink. 2021-08-14 11:17:35,374 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Cluster specification: ClusterSpecification{masterMemoryMB=1600, taskManagerMemoryMB=1728, slotsPerTaskManager=4} 2021-08-14 11:17:39,080 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Submitting application master application_1628910991546_0001 2021-08-14 11:17:39,472 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl [] - Submitted application application_1628910991546_0001 2021-08-14 11:17:39,472 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Waiting for the cluster to be allocated 2021-08-14 11:17:39,474 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Deploying cluster, current state ACCEPTED 2021-08-14 11:17:49,830 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - YARN application has been deployed successfully. 2021-08-14 11:17:49,833 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface ad-virtual-machine:36059 of application 'application_1628910991546_0001'. Job has been submitted with JobID addaa84fd2ee06164ba7d53a029a6342 Program execution finished Job with JobID addaa84fd2ee06164ba7d53a029a6342 has finished. Job Runtime: 12937 ms Accumulator Results:

  • 23a767877a2b6289cf181a8732c5d46a (java.util.ArrayList) [170 elements]

(a,5) (action,1) (after,1) (against,1) (all,2) (and,12) (arms,1) (arrows,1) (awry,1) (ay,1) (bare,1) (be,4) (bear,3) (bodkin,1) (bourn,1) (but,1) (by,2) (calamity,1) (cast,1) (coil,1) (come,1) (conscience,1) (consummation,1) (contumely,1) (country,1) (cowards,1) (currents,1) (d,4) (death,2) (delay,1) (despis,1) (devoutly,1) (die,2) (does,1) (dread,1) (dream,1) (dreams,1) (end,2) (enterprises,1) (er,1) (fair,1) (fardels,1) (flesh,1) (fly,1) (for,2) (fortune,1) (from,1) (give,1) (great,1) (grunt,1) (have,2) (he,1) (heartache,1) (heir,1) (himself,1) (his,1) (hue,1) (ills,1) (in,3) (insolence,1) (is,3) (know,1) (law,1) (life,2) (long,1) (lose,1) (love,1) (make,2) (makes,2) (man,1) (may,1) (merit,1) (might,1) (mind,1) (moment,1) (more,1) (mortal,1) (must,1) (my,1) (name,1) (native,1) (natural,1) (no,2) (nobler,1) (not,2) (now,1) (nymph,1) (o,1) (of,15) (off,1) (office,1) (ophelia,1) (opposing,1) (oppressor,1) (or,2) (orisons,1) (others,1) (outrageous,1) (pale,1) (pangs,1) (patient,1) (pause,1) (perchance,1) (pith,1) (proud,1) (puzzles,1) (question,1) (quietus,1) (rather,1) (regard,1) (remember,1) (resolution,1) (respect,1) (returns,1) (rub,1) (s,5) (say,1) (scorns,1) (sea,1) (shocks,1) (shuffled,1) (sicklied,1) (sins,1) (sleep,5) (slings,1) (so,1) (soft,1) (something,1) (spurns,1) (suffer,1) (sweat,1) (take,1) (takes,1) (than,1) (that,7) (the,22) (their,1) (them,1) (there,2) (these,1) (this,2) (those,1) (thought,1) (thousand,1) (thus,2) (thy,1) (time,1) (tis,2) (to,15) (traveller,1) (troubles,1) (turn,1) (under,1) (undiscover,1) (unworthy,1) (us,3) (we,4) (weary,1) (what,1) (when,2) (whether,1) (whips,1) (who,2) (whose,1) (will,1) (wish,1) (with,3) (would,2) (wrong,1) (you,1)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容