leetcode 62
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
思路一:
采用动态规划的思路,用数组dp记录到每个格子的不同种走法。可以维护一个二维数组dp,其中dp[i][j]表示到当前位置不同的走法的个数,然后可以得到递推式为: dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
var uniquePaths = function(m, n) {
var dp=[];
for(var i=0;i<m;i++){
dp[i]=[];
for(var j=0;j<n;j++){
if(i>0 && j>0 ){
dp[i].push(dp[i][j-1]+dp[i-1][j]);
}else if(i>0 && j===0){
dp[i].push(dp[i-1][j])
}else if(i===0 && j>0){
dp[i].push(dp[i][j-1])
}else {
dp[i].push(1)
}
}
}
return dp[m-1][n-1];
};
改进:为了节省空间,可以使用以为数组,一位数组存储的时候由于已经存在上一行的走法,只需要再加上前一列的,nice!
var dp=[];
for(var i=0;i<n;i++){
dp.push(1);
}
for(var i=1;i<m;i++){
for(var j=1;j<n;j++){
dp[j]+=dp[j-1];
}
}
return dp[n-1];
思路二:
实际相当于机器人总共走了m + n - 2步,其中m - 1步向下走,n - 1步向右走,那么总共不同的方法个数就相当于在步数里面m - 1和n - 1中较小的那个数的取法,实际上是一道组合数的问题,写出代码如下:
排列组合从m+n-2个数里去small(m-1和n-1小的那个)
我也不是很明白?问一下?
leetcode 63
ollow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
The total number of unique paths is 2.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
思路: 和上一道题一样,判断在这个点里如果等于1的话,就让这个dp[i][j]=0;代表不能从这里走。
var uniquePathsWithObstacles = function(obstacleGrid) {
var dp=[];
var m=obstacleGrid.length;
var n=obstacleGrid[0].length;
for(var i=0;i<m;i++){
dp[i]=[];
for(var j=0;j<n;j++){
if(obstacleGrid[i][j]==1){
dp[i].push(0);
}else if(i>0 && j>0 ){
dp[i].push(dp[i][j-1]+dp[i-1][j]);
}else if(i>0 && j===0){
dp[i].push(dp[i-1][j])
}else if(i===0 && j>0){
dp[i].push(dp[i][j-1])
}else {
dp[i].push(1)
}
}
}
return dp[m-1][n-1];
};
改进:一维数组
var uniquePathsWithObstacles = function(obstacleGrid) {
var m=obstacleGrid.length;
var n=obstacleGrid[0].length;
var dp=[];
if(obstacleGrid[0][0]===1){
return 0
}
for(var i=0;i<n;i++){
dp.push(0);
}
dp[0]=1;
for(var i=0;i<m;i++){
for(var j=0;j<n;j++){
if(obstacleGrid[i][j]===1){
dp[j]=0;
}else if(j>0){
dp[j]+=dp[j-1]
}
}
}
return dp[n-1];
};