本文基于OkHttp3的3.11.0版本
implementation 'com.squareup.okhttp3:okhttp:3.11.0'
我们已经分析了OkHttp3的拦截器链和缓存策略,今天我们再来看看OkHttp3的连接池复用。
客户端和服务器建立socket连接需要经历TCP的三次握手和四次挥手,是一种比较消耗资源的动作。Http中有一种keepAlive connections的机制,在和客户端通信结束以后可以保持连接指定的时间。OkHttp3支持5个并发socket连接,默认的keepAlive时间为5分钟。下面我们来看看OkHttp3是怎么实现连接池复用的。
OkHttp3的连接池--ConnectionPool
public final class ConnectionPool {
//线程池,用于执行清理空闲连接
private static final Executor executor = new ThreadPoolExecutor(0 /* corePoolSize */,
Integer.MAX_VALUE /* maximumPoolSize */, 60L /* keepAliveTime */, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp ConnectionPool", true));
//最大的空闲socket连接数
private final int maxIdleConnections;
//socket的keepAlive时间
private final long keepAliveDurationNs;
private final Deque<RealConnection> connections = new ArrayDeque<>();
final RouteDatabase routeDatabase = new RouteDatabase();
boolean cleanupRunning;
}
ConnectionPool里的几个重要变量:
(1)executor线程池,类似于CachedThreadPool,用于执行清理空闲连接的任务。
(2)Deque双向队列,同时具有队列和栈的性质,经常在缓存中被使用,里面维护的RealConnection是socket物理连接的包装
(3)RouteDatabase,用来记录连接失败的路线名单
下面看看ConnectionPool的构造函数
public ConnectionPool() {
this(5, 5, TimeUnit.MINUTES);
}
public ConnectionPool(int maxIdleConnections, long keepAliveDuration, TimeUnit timeUnit) {
this.maxIdleConnections = maxIdleConnections;
this.keepAliveDurationNs = timeUnit.toNanos(keepAliveDuration);
// Put a floor on the keep alive duration, otherwise cleanup will spin loop.
if (keepAliveDuration <= 0) {
throw new IllegalArgumentException("keepAliveDuration <= 0: " + keepAliveDuration);
}
}
从构造函数中可以看出,ConnectionPool的默认空闲连接数为5个,keepAlive时间为5分钟。ConnectionPool是什么时候被创建的呢?是在OkHttpClient的builder中:
public static final class Builder {
...
ConnectionPool connectionPool;
...
public Builder() {
...
connectionPool = new ConnectionPool();
...
}
//我们也可以定制连接池
public Builder connectionPool(ConnectionPool connectionPool) {
if (connectionPool == null) throw new NullPointerException("connectionPool == null");
this.connectionPool = connectionPool;
return this;
}
}
缓存操作:添加、获取、回收连接
(1)从缓存中获取连接
//ConnectionPool.class
@Nullable
RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {
assert (Thread.holdsLock(this));
for (RealConnection connection : connections) {
if (connection.isEligible(address, route)) {
streamAllocation.acquire(connection, true);
return connection;
}
}
return null;
}
获取连接的逻辑比较简单,就遍历连接池里的连接connections,然后用RealConnection的isEligible方法找到符合条件的连接,如果有符合条件的连接则复用。需要注意的是,这里还调用了streamAllocation的acquire方法。acquire方法的作用是对RealConnection引用的streamAllocation进行计数,OkHttp3是通过RealConnection的StreamAllocation的引用计数是否为0来实现自动回收连接的。
//StreamAllocation.class
public void acquire(RealConnection connection, boolean reportedAcquired) {
assert (Thread.holdsLock(connectionPool));
if (this.connection != null) throw new IllegalStateException();
this.connection = connection;
this.reportedAcquired = reportedAcquired;
connection.allocations.add(new StreamAllocationReference(this, callStackTrace));
}
public static final class StreamAllocationReference extends WeakReference<StreamAllocation> {
public final Object callStackTrace;
StreamAllocationReference(StreamAllocation referent, Object callStackTrace) {
super(referent);
this.callStackTrace = callStackTrace;
}
}
//RealConnection.class
public final List<Reference<StreamAllocation>> allocations = new ArrayList<>();
每一个RealConnection中都有一个allocations变量,用于记录对于StreamAllocation的引用。StreamAllocation中包装有HttpCodec,而HttpCodec里面封装有Request和Response读写Socket的抽象。每一个请求Request通过Http来请求数据时都需要通过StreamAllocation来获取HttpCodec,从而读取响应结果,而每一个StreamAllocation都是和一个RealConnection绑定的,因为只有通过RealConnection才能建立socket连接。所以StreamAllocation可以说是RealConnection、HttpCodec和请求之间的桥梁。
当然同样的StreamAllocation还有一个release方法,用于移除计数,也就是将当前的StreamAllocation的引用从对应的RealConnection的引用列表中移除。
private void release(RealConnection connection) {
for (int i = 0, size = connection.allocations.size(); i < size; i++) {
Reference<StreamAllocation> reference = connection.allocations.get(i);
if (reference.get() == this) {
connection.allocations.remove(i);
return;
}
}
throw new IllegalStateException();
}
(2)向缓存中添加连接
//ConnectionPool.class
void put(RealConnection connection) {
assert (Thread.holdsLock(this));
if (!cleanupRunning) {
cleanupRunning = true;
executor.execute(cleanupRunnable);
}
connections.add(connection);
}
添加连接之前会先调用线程池执行清理空闲连接的任务,也就是回收空闲的连接。
(3)空闲连接的回收
private final Runnable cleanupRunnable = new Runnable() {
@Override public void run() {
while (true) {
long waitNanos = cleanup(System.nanoTime());
if (waitNanos == -1) return;
if (waitNanos > 0) {
long waitMillis = waitNanos / 1000000L;
waitNanos -= (waitMillis * 1000000L);
synchronized (ConnectionPool.this) {
try {
ConnectionPool.this.wait(waitMillis, (int) waitNanos);
} catch (InterruptedException ignored) {
}
}
}
}
}
};
cleanupRunnable中执行清理任务是通过cleanup方法来完成,cleanup方法会返回下次需要清理的间隔时间,然后会调用wait方法释放锁和时间片。等时间到了就再次进行清理。下面看看具体的清理逻辑:
long cleanup(long now) {
//记录活跃的连接数
int inUseConnectionCount = 0;
//记录空闲的连接数
int idleConnectionCount = 0;
//空闲时间最长的连接
RealConnection longestIdleConnection = null;
long longestIdleDurationNs = Long.MIN_VALUE;
synchronized (this) {
for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
RealConnection connection = i.next();
//判断连接是否在使用,也就是通过StreamAllocation的引用计数来判断
//返回值大于0说明正在被使用
if (pruneAndGetAllocationCount(connection, now) > 0) {
//活跃的连接数+1
inUseConnectionCount++;
continue;
}
//说明是空闲连接,所以空闲连接数+1
idleConnectionCount++;
//找出了空闲时间最长的连接,准备移除
long idleDurationNs = now - connection.idleAtNanos;
if (idleDurationNs > longestIdleDurationNs) {
longestIdleDurationNs = idleDurationNs;
longestIdleConnection = connection;
}
}
if (longestIdleDurationNs >= this.keepAliveDurationNs
|| idleConnectionCount > this.maxIdleConnections) {
//如果空闲时间最长的连接的空闲时间超过了5分钟
//或是空闲的连接数超过了限制,就移除
connections.remove(longestIdleConnection);
} else if (idleConnectionCount > 0) {
//如果存在空闲连接但是还没有超过5分钟
//就返回剩下的时间,便于下次进行清理
return keepAliveDurationNs - longestIdleDurationNs;
} else if (inUseConnectionCount > 0) {
//如果没有空闲的连接,那就等5分钟后再尝试清理
return keepAliveDurationNs;
} else {
//当前没有任何连接,就返回-1,跳出循环
cleanupRunning = false;
return -1;
}
}
closeQuietly(longestIdleConnection.socket());
// Cleanup again immediately.
return 0;
}
下面我们看看判断连接是否是活跃连接的pruneAndGetAllocationCount方法
private int pruneAndGetAllocationCount(RealConnection connection, long now) {
List<Reference<StreamAllocation>> references = connection.allocations;
for (int i = 0; i < references.size(); ) {
Reference<StreamAllocation> reference = references.get(i);
//如果存在引用,就说明是活跃连接,就继续看下一个StreamAllocation
if (reference.get() != null) {
i++;
continue;
}
// We've discovered a leaked allocation. This is an application bug.
//发现泄漏的引用,会打印日志
StreamAllocation.StreamAllocationReference streamAllocRef =
(StreamAllocation.StreamAllocationReference) reference;
String message = "A connection to " + connection.route().address().url()
+ " was leaked. Did you forget to close a response body?";
Platform.get().logCloseableLeak(message, streamAllocRef.callStackTrace);
//如果没有引用,就移除
references.remove(i);
connection.noNewStreams = true;
//如果列表为空,就说明此连接上没有StreamAllocation引用了,就返回0,表示是空闲的连接
if (references.isEmpty()) {
connection.idleAtNanos = now - keepAliveDurationNs;
return 0;
}
}
//遍历结束后,返回引用的数量,说明当前连接是活跃连接
return references.size();
}
至此我们就分析完OkHttp3的连接池复用了。
总结
(1)OkHttp3中支持5个并发socket连接,默认的keepAlive时间为5分钟,当然我们可以在构建OkHttpClient时设置不同的值。
(2)OkHttp3通过Deque<RealConnection>来存储连接,通过put、get等操作来管理连接。
(3)OkHttp3通过每个连接的引用计数对象StreamAllocation的计数来回收空闲的连接,向连接池添加新的连接时会触发执行清理空闲连接的任务。清理空闲连接的任务通过线程池来执行。