HDFS深度历险 之 从客户端逻辑看HDFS写入机制

说明

除了标注之外,本文纯属原创,转载请注明出处:https://www.jianshu.com/p/ea6ef5f5b868

HDFS架构简介

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。本文基于Hadoop 2.7.3源码,分析本地文件推送(新建/追加)到的HDFS客户端逻辑。

HDFS架构图
  1. HDFS架构主要包含两种类型的节点:NameNode和DataNode。
  2. NameNode,其实就是名字节点,其功能类似于我们常用的磁盘文件系统中的inode。对于HDFS而言,NameNode相当于“目录管理器”和“inode表”。
  3. NameNode保存两类关键的映射表:
  • 名字空间表:从文件名到数据块(DataBlock)的映射,这部分数据保存在NameNode服务器的磁盘。
  • inode表:从数据块(DataBlock)到机器的映射,包括每一个数据块保存在哪一个或者哪几个机器上。这部分数据在每次重启NameNode的时候都会和DataNode通讯并重建。
  1. 对于Hadoop 2.7.3而言,一个DataBlock默认是128MB,所以一个文件可能需要N个DataBlock来存储,那么名字空间表很可能是一个文件名映射到一个DataBlock的数组。
  2. 关于这两张表如何协作定位文件:
  • 当使用文件名访问文件时,NameNode会查询名字空间表,根据这个文件名获取它所有内容对应的DataBlock列表(是不是很类似于单机磁盘的数据访问)。此时inode表会查询每一个DataBlock的信息,包括它所在的位置(DataNode的IP+端口)、DataBlock的ID和时间戳以及里面数据的长度(<=128MB)等。
  • 这个DataBlock列表返回到客户端,客户端根据每个DataBlock上的信息(线索),分别连接到每个DataNode上,获取上面存储的数据。
  1. 客户端与NameNode、NameNode与DataNode的连接,全部都是通过ProtoBuf的RPC调用来实现的。关于ProtoBuf可以参考这里。例如,下面就是追加文件的append请求的RPC协议:
//摘自hadoop-hdfs-project/hadoop-hdfs/src/main/proto/ClientNamenodeProtocol.proto

//RPC请求
rpc append(AppendRequestProto) returns(AppendResponseProto);

//请求报文
message AppendRequestProto {
  required string src = 1;
  required string clientName = 2;
  optional uint32 flag = 3; // bits set using CreateFlag
}

//应答报文
message AppendResponseProto {
  optional LocatedBlockProto block = 1;
  optional HdfsFileStatusProto stat = 2;
}

HDFS写文件Pipeline机制

HDFS在对文件的写入方面,只允许数据追加到文件末尾,而不允许在文件中间修改文件。因为在文件中间修改文件,需要涉及文件锁、数据块之类的比较复杂的逻辑。

Hadoop的文件按照DataBlock分块,并以DataBlock为单位做冗余(负载均衡)。HDFS可以指定一个复制因子(replication),默认是保存3份,根据dfs.replication配置项配置。

下面分析HDFS写文件的Pipeline流程(蓝色线表示用于通讯,红色线表示数据的传输路线):

hadoop pipeline流程图
  • ①客户端发送请求到NameNode,请求写文件/新建数据块。
  • NameNode收到请求后,会给客户端分配一个数据块,其ID是blk_123456,并指明DataBlock各个拷贝所在的各个DataNode的IP和端口(图中是分别存在于三个DataNode中)。
  • 这一系列的DataNode称为Pipeline,也就是数据传输的管道,也就是【DataNode_1:50010, DataNode_2:50010, DataNode_3:50010】。
  • ②客户端收到数据块的信息,开始对DataNode发起写的请求,请求报文包括要写的数据块,要写的数据大小等等。请求成功后,发送数据到第一个DataNode,也就是图中的DataNode_1,在该请求中包含DataBlock各个拷贝的地址(包含DataNode2和DataNode3的地址):【DataNode_1:50010, DataNode_2:50010, DataNode_3:50010】,发送完成之后等待DataNode_1返回的ACK报文。
  • ③DataNode_1收到数据后,保存数据,并把数据发送到DataNode_2,Pipeline修改为【DataNode_2:50010, DataNode_3:50010】,发送完成之后等待DataNode_2返回的ACK报文。
  • ④DataNode_2收到数据后,把数据发送到DataNode_3,Pipeline修改为【DataNode_3:50010】,发送完成之后等待DataNode_2返回的ACK报文。
  • ⑤DataNode_3发现Pipeline中只有自己,不再有下游的DataNode节点,于是处理完成之后只需要返回ACK到Pipeline的上游节点,即DataNode_2。
  • ⑥DataNode_2收到DataNode_3的ACK,于是把ACK发送到Pipeline的上游节点,即DataNode_1。
  • ⑦DataNode_1收到DataNode_2的ACK,把ACK发送到Pipeline的上游节点,即客户端。

数据发送至此完成。

HDFS文件推送客户端

要把本地文件推送到HDFS,可以通过以下两个命令实现:

hadoop fs -appendToFile <localsrc> ... <dst>
hadoop fs -put [-f] [-p] [-l] <localsrc> ... <dst>

跟踪调用堆栈发现,这两个命令最终是调用DFSOutputStream.java中的代码实现文件的拷贝。

辅助发送的相关类和数据结构

这份代码里面包含了一些用于辅助发送的类:

  • DFSOutputStream:实现了发送数据的主流程,最主要是继承自FSOutputSummer这个虚拟类的接口方法writeChunk
  • DataStreamer:继承自Daemon的后台线程,主要实现数据的流式发送。
  • ResponseProcessor:同样继承自Daemon的后台线程,主要实现对已发送数据包的ACK报文的接收。

还有一些保存发送数据相关信息的数据结构:

  • DFSPacket:表示发送出去的一个数据包,包含相应的请求头部以及相关标志位。
  • LinkedList<DFSPacket> dataQueue:用于保存待发送的数据包。它是主线程DFSOutputStream和发送线程DataStreamer之间生产者-消费者关系*的共享数据结构。
  • LinkedList<DFSPacket> ackQueue:用于保存已经发送的数据包。发出去的数据包还要等待DataNode返回ACK才可以被认为是发送成功。它是发送线程DataStreamer与ACK接收线程ResponseProcessor之间生产者-消费者关系的共享数据结构。
  • BlockConstructionStage stage:这是一个状态变量,整个发送流程就相当于一个状态机。

看完上面的数据结构,整个数据发送流程就很明显了:
<u>DFSOutputStream把数据组装成DFSPacket对象,放入dataQueue;然后等待发送线程DataStreamer发送到DataNode;DataStreamer发送之后,把DFSPacket对象移动到ackQueue,等待ACK线程ResponseProcessor在收到对应的ACK之后把该DFSPacket从队列移除。</u>

下面主要分析DFSOutputStream.java这个客户端代码的执行流程。

数据发送的主要流程

  • newStreamForCreate/newStreamForAppend这两个静态函数用于创建DFSOutputStream对象。一个是用于新建文件,一个用于追加到现有的文件。两个函数主要差别在于,前者需要新建一个文件(发送create的RPC请求到NameNode),后者直接通过发送append的RPC请求到NameNode,在返回报文中获取文件最后的一个数据块并开始写入。
  • newStreamForCreate/newStreamForAppend这两个函数返回一个DFSOutputStream的对象,然后被org.apache.hadoop.io.IOUtils.copyBytes()调用DFSOutputStreamwriteChunk接口函数,把本地的数据块发送出去。下面主要看writeChunk函数。这个函数的参数主要包括数据的缓冲区、要发送的数据在DataBlock中的offset、还有数据的校验等。
HDFS客户端数据发送流程.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容

  • 一.HDFS简介 hdfs是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件,并且是分布式的,由...
    卡卡xx阅读 834评论 0 1
  • 本篇博客讲解了HDFS的读机制和写机制,通过一个实例演示了HDFS的文件存储过程,非常通俗易懂。 1、客户端写文件...
    Michaelhbjian阅读 720评论 0 0
  • Hadoop 核心-HDFS 1. HDFS概述 1.1 介绍 在现代的企业环境中,单机容量往往无法存储大量数据,...
    打开世界的源代码阅读 450评论 0 0
  • 从AMQP协议可以看出,MessageQueue、Exchange和Binding构成了AMQP协议的核心,下面我...
    小波同学阅读 508评论 0 1
  • 今天是训练的第四天,也是非常期待的高效阅读的精髓所在,说真的,这节课感觉信息量太大,可以回顾的内容太多,所以...
    宇宙公民辛欣阅读 157评论 0 0