模拟退火笔记

模拟退火常用于三个方面:求解函数极值、TSP问题、书店买书问题。作为一种累赘的智能算法,骗阅卷老师足够了(๑̀ㅂ•́)و✧

一、求解函数极值

这类问题与其用模拟退火,不如用粒子群去,不仅高端还实用 --- 粒子群学习链接

二、TSP问题

主函数

%% 数据预处理
tic
rng('shuffle')  % 控制随机数的生成,否则每次打开matlab得到的结果都一样
clear;clc
coord = [11003.611100,42102.500000;11108.611100,42373.888900;11133.333300,42885.833300;11155.833300,42712.500000;11183.333300,42933.333300;11297.500000,42853.333300;11310.277800,42929.444400;11416.666700,42983.333300;11423.888900,43000.277800;11438.333300,42057.222200;11461.111100,43252.777800;11485.555600,43187.222200;11503.055600,42855.277800;11511.388900,42106.388900;11522.222200,42841.944400;11569.444400,43136.666700;11583.333300,43150.000000;11595.000000,43148.055600;11600.000000,43150.000000;11690.555600,42686.666700;11715.833300,41836.111100;11751.111100,42814.444400;11770.277800,42651.944400;11785.277800,42884.444400;11822.777800,42673.611100;11846.944400,42660.555600;11963.055600,43290.555600;11973.055600,43026.111100;12058.333300,42195.555600;12149.444400,42477.500000;12286.944400,43355.555600;12300.000000,42433.333300;12355.833300,43156.388900;12363.333300,43189.166700;12372.777800,42711.388900;12386.666700,43334.722200;12421.666700,42895.555600;12645.000000,42973.333300];
n = size(coord,1);  % 城市的数目


figure  % 新建一个图形窗口
plot(coord(:,1),coord(:,2),'o');   % 画出城市的分布散点图
hold on % 等一下要接着在这个图形上画图的

d = zeros(n);   % 初始化两个城市的距离矩阵全为0
for i = 2:n  
    for j = 1:i  
        coord_i = coord(i,:);   x_i = coord_i(1);     y_i = coord_i(2);  % 城市i的横坐标为x_i,纵坐标为y_i
        coord_j = coord(j,:);   x_j = coord_j(1);     y_j = coord_j(2);  % 城市j的横坐标为x_j,纵坐标为y_j
        d(i,j) = sqrt((x_i-x_j)^2 + (y_i-y_j)^2);   % 计算城市i和j的距离
    end
end
d = d+d';   % 生成距离矩阵的对称的一面


%% 参数初始化
T0 = 1000;   % 初始温度
T = T0; % 迭代中温度会发生改变,第一次迭代时温度就是T0
maxgen = 1000;  % 最大迭代次数
Lk = 500;  % 每个温度下的迭代次数
alpfa = 0.95;  % 温度衰减系数

%%  随机生成一个初始解
path0 = randperm(n);  % 生成一个1-n的随机打乱的序列作为初始的路径
result0 = calculate_tsp_d(path0,d); % 调用我们自己写的calculate_tsp_d函数计算当前路径的距离

%% 定义一些保存中间过程的量,方便输出结果和画图
min_result = result0;     % 初始化找到的最佳的解对应的距离为result0
RESULT = zeros(maxgen,1); % 记录每一次外层循环结束后找到的min_result (方便画图)

%% 模拟退火过程
for iter = 1 : maxgen  % 外循环, 我这里采用的是指定最大迭代次数
    for i = 1 : Lk  %  内循环,在每个温度下开始迭代
        path1 = gen_new_path(path0);  % 调用我们自己写的gen_new_path函数生成新的路径
        result1 = calculate_tsp_d(path1,d); % 计算新路径的距离
        %如果新解距离短,则直接把新解的值赋值给原来的解
        if result1 < result0    
            path0 = path1; % 更新当前路径为新路径
            result0 = result1; 
        else
            p = exp(-(result1 - result0)/T); % 根据Metropolis准则计算一个概率
            if rand(1) < p   % 生成一个随机数和这个概率比较,如果该随机数小于这个概率
                path0 = path1;  % 更新当前路径为新路径
                result0 = result1; 
            end
        end
        % 判断是否要更新找到的最佳的解
        if result0 < min_result  % 如果当前解更好,则对其进行更新
            min_result = result0;  % 更新最小的距离
            best_path = path0;  % 更新找到的最短路径
        end
    end
    RESULT(iter) = min_result; % 保存本轮外循环结束后找到的最小距离
    T = alpfa*T;   % 温度下降       
end


disp('最佳的方案是:'); disp(mat2str(best_path))
disp('此时最优值是:'); disp(min_result)


best_path = [best_path,best_path(1)];   % 在最短路径的最后面加上一个元素,即第一个点(我们要生成一个封闭的图形)
n = n+1;  % 城市的个数加一个(紧随着上一步)
for i = 1:n-1 
    j = i+1;
    coord_i = coord(best_path(i),:);   x_i = coord_i(1);     y_i = coord_i(2); 
    coord_j = coord(best_path(j),:);   x_j = coord_j(1);     y_j = coord_j(2);
    plot([x_i,x_j],[y_i,y_j],'-b')    % 每两个点就作出一条线段,直到所有的城市都走完
%     pause(0.02)  % 暂停0.02s再画下一条线段
    hold on
end

%% 画出每次迭代后找到的最短路径的图形
figure
plot(1:maxgen,RESULT,'b-');
xlabel('迭代次数');
ylabel('最短路径');

toc

路径求和

function  result =  calculate_tsp_d(path,d)
% 输入:path:路径(1至n的一个序列),d:距离矩阵
    n = length(path);
    result = 0; % 初始化该路径走的距离为0
    for i = 1:n-1  
        result = d(path(i),path(i+1)) + result;  % 按照这个序列不断的更新走过的路程这个值
    end   
    result = d(path(1),path(n)) + result;  % 别忘了加上从最后一个城市返回到最开始那个城市的距离
end

新生成路径解

function path1 = gen_new_path(path0)
    % path0: 原来的路径
    n = length(path0);
    % 随机选择两种产生新路径的方法
    p1 = 0.33;  % 使用交换法产生新路径的概率
    p2 = 0.33;  % 使用移位法产生新路径的概率
    r = rand(1); % 随机生成一个[0 1]间均匀分布的随机数
    if  r< p1    % 使用交换法产生新路径 
        c1 = randi(n);   % 生成1-n中的一个随机整数
        c2 = randi(n);   % 生成1-n中的一个随机整数
        path1 = path0;  % 将path0的值赋给path1
        path1(c1) = path0(c2);  %改变path1第c1个位置的元素为path0第c2个位置的元素
        path1(c2) = path0(c1);  %改变path1第c2个位置的元素为path0第c1个位置的元素
    elseif r < p1+p2 % 使用移位法产生新路径
        c1 = randi(n);   % 生成1-n中的一个随机整数
        c2 = randi(n);   % 生成1-n中的一个随机整数
        c3 = randi(n);   % 生成1-n中的一个随机整数
        sort_c = sort([c1 c2 c3]);  % 对c1 c2 c3从小到大排序
        c1 = sort_c(1);  c2 = sort_c(2);  c3 = sort_c(3);  % c1 < = c2 <=  c3
        tem1 = path0(1:c1-1);
        tem2 = path0(c1:c2);
        tem3 = path0(c2+1:c3);
        tem4 = path0(c3+1:end);
        path1 = [tem1 tem3 tem2 tem4];
    else  % 使用倒置法产生新路径
        c1 = randi(n);   % 生成1-n中的一个随机整数
        c2 = randi(n);   % 生成1-n中的一个随机整数
        if c1>c2  % 如果c1比c2大,就交换c1和c2的值
            tem = c2;
            c2 = c1;
            c1 = tem;
        end
        tem1 = path0(1:c1-1);
        tem2 = path0(c1:c2);
        tem3 = path0(c2+1:end);
        path1 = [tem1 fliplr(tem2) tem3];   %矩阵的左右对称翻转 fliplr,上下对称翻转 flipud
    end
end

三、书店买书问题

主函数

%% 模拟退火解决书店买书问题
tic
rng('shuffle')  % 控制随机数的生成,否则每次打开matlab得到的结果都一样

load book_data  % 这个文件一定要在当前文件夹下面
% 这个数据文件里面保存了两个矩阵:M是每本书在每家店的价格; freight表示每家店的运费
[s, b] = size(M);  % s是书店的数量,b是要购买的书的数量

%% 参数初始化
T0 = 1000;   % 初始温度
T = T0; % 迭代中温度会发生改变,第一次迭代时温度就是T0
maxgen = 500;  % 最大迭代次数
Lk = 200;  % 每个温度下的迭代次数
alfa = 0.95;  % 温度衰减系数

%%  随机生成一个初始解
way0 = randi([1, s],1,b); % 在1-s这些整数中随机抽取一个1*b的向量,表示这b本书分别在哪家书店购买
money0 = calculate_money(way0,freight,M,b); % 调用我们自己写的calculate_money函数计算这个方案的花费

%% 定义一些保存中间过程的量,方便输出结果和画图
min_money = money0;     % 初始化找到的最佳的解对应的花费为money0
MONEY = zeros(maxgen,1); % 记录每一次外层循环结束后找到的min_money (方便画图)

%% 模拟退火过程
for iter = 1 : maxgen  % 外循环, 我这里采用的是指定最大迭代次数
    for i = 1 : Lk  %  内循环,在每个温度下开始迭代
        way1 = gen_new_way(way0,s,b);  % 调用我们自己写的gen_new_way函数生成新的方案
        money1 = calculate_money(way1,freight,M,b); % 计算新方案的花费
        if money1 < money0    % 如果新方案的花费小于当前方案的花费
            way0 = way1; % 更新当前方案为新方案
            money0 = money1;
        else
            p = exp(-(money1 - money0)/T); % 根据Metropolis准则计算一个概率
            if rand(1) < p   % 生成一个随机数和这个概率比较,如果该随机数小于这个概率
                way0 = way1;
                money0 = money1;
            end
        end
        % 判断是否要更新找到的最佳的解
        if money0 < min_money  % 如果当前解更好,则对其进行更新
            min_money = money0;  % 更新最小的花费
            best_way = way0;  % 更新找到的最佳方案
        end
    end
    MONEY(iter) = min_money; % 保存本轮外循环结束后找到的最小花费
    T = alfa*T;   % 温度下降
end

disp('最佳的方案是:'); disp(mat2str(best_way))
disp('此时最优值是:'); disp(min_money)

%% 画出每次迭代后找到的最佳方案的图形
figure
plot(1:maxgen,MONEY,'b-');
xlabel('迭代次数');
ylabel('最小花费');
toc

随机一本书换随机一家书店解

function way1 = gen_new_way(way0, s, b)
% way0:原来的买书方案,是一个1*b的向量,每一个元素都位于1-s之间
        index =  randi([1, b],1) ;  % 看哪一本书要更换书店购买
        way1 = way0;  % 将原来的方案赋值给way1
        way1(index) = randi([1, s],1);  % 将way1中的第index本书换一个书店购买   
end

价格求和

function  money =  calculate_money(way,freight,M,b)
% 输入:way: 购买方案; fright:运费;  M: 每本书在每家店的价格; b:一共要购买几本书
   index = unique(way);  % 在哪些商店购买了商品,因为我们等下要计算运费
   money = sum(freight(index)); % 计算买书花费的运费
    % 计算总花费:刚刚计算出来的运费 + 五本书的售价
    for i = 1:b 
        money = money + M(way(i),i);  
    end
end

其实仔细看的看客可以发现,无论是TSP问题还是书店买书问题,主要都是用随机生成的解,直到最优解代替初始解,可以说和模拟退火算法的核心没有半毛钱关系...(我试过不用温度这个变量,运行结果一样,运行速度甚至比原代码还快)

从原理解释:模拟退火只是一种优化的蒙特卡洛,偏向于全局和局部需要结合的随机问题,若是遇到类似于背包或最短路这类问题,用模拟退火可以说是多此一举,不如用动态规划或Dijkstra解决,准确率和效率都有所保证。但为什么这么多人用模拟退火呢,我觉得应该是阅卷老师的问题,他们更喜爱用了智能算法的论文,因此是大势所趋吧~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。