关于内存的知识

1、存储历史:

1984年,东芝公司的发明人舛冈富士雄首先提出了快速闪存存储器(此处简称闪存)的概念。特点是非易失性,其记录速度也非常快,同时体积小,因此后来被广泛运用于数码相机,掌上电脑,MP3、手机等小型数码产品中。
Intel是世界上第一个生产闪存并将其投放市场的公司,当时为NOR闪存。
1989年日立公司于研制了NAND闪存,逐渐替代了NOR闪存。
PC上的SSD和手机的ROM,本质上是一家人,都是NAND闪存。

存储设备主要区分

  1. 存储性质不同
  2. 存储容量不同
  3. 运行速度不同
  4. 用途不同

手机内存(RAM,随机存取存储器)又称作“随机存储器”,是与CPU直接交换数据的内部存储器,也叫主存(内存)。它可以随时读写,而且速度很快,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介。这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序。说人话,就是我们常说的手机运行内存。

在PC平台,内存经历了SIMM内存、EDO DRAM内存、SDRAM内存、Rambus DRAM内存、DDR内存的发展,到如今普及到DDR4内存,而手机上采用的LPDDR RAM是“低功耗双倍数据速率内存”的缩写,与桌面平台的DDR4内存相比,面向移动平台的LPDDR4,其能够在带来等效的性能(速度)的同时,兼顾更少的能源消耗。

闪存(Flash Memory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信息)的存储器,即使断电也不会丢失数据,数据删除不是以单个的字节为单位而是以固定的区块为单位(NOR Flash为字节存储。),区块大小一般为256KB到20MB。通俗地说,它就相当于电脑中的硬盘,运行内存在断电后不会保留存储的数据,而要长期保持数据不丢失还是需要将数据从内存写入到硬盘当中。对于电脑这样的桌面设备,我们可以塞进去一块硬盘,而对于手机这样的移动设备,显然就不现实了。

EMMC

eMMC是非易失性存储器,不论在通电或断电状态下,数据都是可以存储的,而DDR3内存是易失性存储器,断电同时,数据即丢失
eMMC的全称为“embedded Multi Media Card”,即嵌入式的多媒体存储卡。是由MMC协会所订立的、主要是针对手机或平板电脑等产品的内嵌式存储器标准规格。
eMMC的存储容量要比DDR3内存大3-4倍,常见有32G,而DDR3内存容量相对较小,常见有2-16G
2015年前所有主流的智能手机和平板电脑都采用这种存储介质。
emmc 协议

UFS

2011年电子设备工程联合委员会(Joint Electron Device En gineering Council,简称JEDEC)发布了第一代通用闪存存储(Universal Flash Storage,简称UFS)标准,即UFS 2.0的前身。
2013年,JEDEC在当年9月发布了UFS 2.0的新一代闪存存储标准,UFS 2.0闪存读写速度理论上可以达到1400MB/s,不仅比eMMC有更巨大的优势,而且它甚至能够让电脑上使用的SSD也相形见绌。
UFS 2.0共有两个版本:
1、HS-G2,也就是目前的UFS 2.0
2、HS-G3,可以称为UFS 2.1,其数据读取速度将飙至1.5G/s

UFS与eMMC区别

UFS 2.0的闪存规格则采用了新的标准,它使用的是串行接口,很像PATA、SATA的转换。并且它支持全双工运行,可同时读写操作,还支持指令队列
eMMC是半双工,读写必须分开执行,指令也是打包的,在速度上就慢。

DDR与LPDDR

DDR、DDR2发展到DDR3,频率更高、电压更低的同时延迟也在不断变大,慢慢改变着内存子系统,而DDR4最重要的使命是提高频率和带宽,每个针脚都可以提供2Gbps(256MB/s)的带宽,拥有高达4266MHz的频率,内存容量最大可达到128GB,运行电压正常可降低到1.2V、1.1V

LPDDR是什么呢?它的全称是Low Power Double Data Rate SDRAM,是DDR的一种,又称为mDDR(Mobile DDR SDRAM),是美国JEDEC固态技术协会(JEDEC Solid State Technology Association)面向低功耗内存而制定的通信标准,以低功耗和小体积著称,专门用于移动式电子产品。

LPDDR的运行电压(工作电压)相比DDR的标准电压要低,从第一代LPDDR到如今的LPDDR4,每一代LPDDR都使内部读取大小和外部传输速度加倍。其中LPDDR4可提供32Gbps的带宽,输入/输出接口数据传输速度最高可达3200Mbps,电压降到了1.1V。至于最新的LPDDR4X,与LPDDR4相同,只是通过将I / O电压降低到0.6 V而不是1.1 V来节省额外的功耗,也就是更省电

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容