Docker下运行openvino人脸识别示例的步骤

(1)获取openvino的软件镜像openvino_docker.tar

2019-08-13 15-49-53.png

(2)Docker导入本地镜像为openvino

cat /home/czw/下载/openvino_docker/openvino_docker |docker import - openvino

(3)查看主机上的镜像,找到IMAGE ID

docker images


2019-08-13 15-54-26.png

(4)使用openvino镜像来运行

docker run -it openvino:latest /bin/bash
docker ps -a

使用docker ps -a查看有那些容器在运行
2019-08-13 15-58-48.png

(5)再次启动容器需要的操作

docker start 容器ID
docker attach 容器ID


2019-08-13 16-03-25.png

root@7483ae1d61a4:容器已启动标志

之后所有的操作都是在容器内:

2019-08-13 16-05-48.png

在容器内时,把它当做linux系统来操作即可

(6)在容器内运行人脸识别示例

main.cpp所在位置:/opt/intel/computer_vision_sdk_2018.3.343/
deployment_tools/inference_engine/samples/interactice_face
_detection_sample

(1)在xx/samples目录下创建名为build的目录

创建build目录:mkdir build
切换到build目录:cd build

(2)编译

cmake -DCMAKE_BUILD_+TYPE=Debug /opt/intel/computer_vision_sdk_2018.3.343/deployment_tools/inference_engine/samples)
运行make生成示例:make
切换到build下的/intel64/Debug目录:
cd /opt/intel/computer_vision_sdk_2018.3.343/deployment_tools/
inference_engine/samples/build/intel64/Debug

(3)输入模型参数,运行示例

./interactive_face_detection_sample -i /opt/image.jpg -m /opt/intel/computer_vision_sdk_2018.3.343/deployment_tools/intel_models/face-detection-adas-0001/FP32/face-detection-adas-0001.xml -m_ag /opt/intel/computer_vision_sdk_2018.3.343/deployment_tools/intel_models/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013.xml -m_hp /opt/intel/computer_vision_sdk_2018.3.343/deployment_tools/intel_models/head-pose-estimation-adas-0001/FP32/head-pose-estimation-adas-0001.xml -m_em /opt/intel/computer_vision_sdk_2018.3.343/deployment_tools/intel_models/emotions-recognition-retail-0003/FP32/emotions-recognition-retail-0003.xml -d CPU


2019-08-13 16-26-54.png
2019-08-13 16-27-14.png

图像或视频处理后的存储位置: /opt/video/

(4)从容器将文件复制到本机

docker cp 7483ae1d61a4:/opt/video/image.jpg /home/czw/下载

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,825评论 6 546
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,814评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,980评论 0 384
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 64,064评论 1 319
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,779评论 6 414
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 56,109评论 1 330
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 44,099评论 3 450
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,287评论 0 291
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,799评论 1 338
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,515评论 3 361
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,750评论 1 375
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,221评论 5 365
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,933评论 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,327评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,667评论 1 296
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,492评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,703评论 2 380