数据结构 [Java版本] 递归 & 最短路径 & 八皇后问题

递归的应用场景

看个实际应用场景,迷宫问题(回溯), 递归(Recursion)


递归
递归的概念

简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。

我列举两个小案例,来帮助大家理解递归,给大家回顾一下递归调用机制
打印问题
阶乘问题

public class RecTest {
    public static void main(String[] args) {
        test(5);
        int factorial = factorial(10);
        System.out.println(factorial);
    }

    //输出什么?
    public static void test(int n) {
        if (n > 2) {
            test(n - 1);
        }
        System.out.println("n=" + n);
    }

    //阶乘
    public static int factorial(int n) {
        if (n == 1) {
            return 1;
        } else {
            return factorial(n - 1) * n;
        }
    }
}
递归调用机制的图解
递归能解决什么样的问题

各种数学问题如: 8皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题(google编程大赛)
各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等.
将用栈解决的问题-->第归代码比较简洁

递归需要遵守的重要规则

执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
方法的局部变量是独立的,不会相互影响, 比如n变量
如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)
当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。

递归 - 迷宫问题

说明:
小球得到的路径,和程序员�设置的找路策略有关即:找�路的上下左右的顺序相关
再得到小球路径时,可以先�使用(下右上左),再改成(上�右下左),看看路径是不是有变化
测试回溯现象
思考: 如何求出最短路径?

代码

package cn.icanci.datastructure.recursion;

import sun.util.resources.cldr.fr.CalendarData_fr_MQ;

/**
 * @Author: icanci
 * @ProjectName: AlgorithmAndDataStructure
 * @PackageName: cn.icanci.datastructure.recursion
 * @Date: Created in 2020/3/3 21:28
 * @ClassAction: 迷宫问题
 */
public class MiGong {
    public static void main(String[] args) {
        //先创建一个二维数组,模拟迷宫
        //地图
        int[][] map = new int[8][7];
        //使用1表示墙
        //上下为1
        for (int i = 0; i < 7; i++) {
            map[0][i] = 1;
            map[7][i] = 1;
        }
        //左右为1
        for (int i = 0; i < 8; i++) {
            map[i][0] = 1;
            map[i][6] = 1;
        }
        map[3][1] = 1;
        map[3][2] = 1;
        //输出地图
        for (int i = 0; i < 8; i++) {
            for (int j = 0; j < 7; j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
        System.out.println("==========================");
        //使用递归给小球找路
        setWay(map, 1, 1);
        //输出新的地图
        for (int i = 0; i < 8; i++) {
            for (int j = 0; j < 7; j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
    }

    /**
     * 使用递归回溯来给小球找路
     * 说明 出发点(1,1)
     * 如果到达 (6,5) 说明找到
     * 约定 大概 map[i][j] 为0的时候,没有走过 为1是墙 2为通路可走 3为已经走过 但是走不通
     * 在走之前 需要确定一个策略 (方法) 下->右->上->左 走不通 回溯
     *
     * @param map 表示地图
     * @param i   从哪个位置开始找 横坐标
     * @param j   从哪个位置开始找 纵坐标
     * @return 找到返回true 没有就是false
     */
    public static boolean setWay(int[][] map, int i, int j) {
        if (map[6][5] == 2) {
            //找到
            return true;
        } else if (map[i][j] == 0) {
            //没有走过
            //需要确定一个策略 (方法) 下->右->上->左 走不通 回溯
            //假定可以
            map[i][j] = 2;
            if (setWay(map, i + 1, j)) {
                //下
                return true;
            } else if (setWay(map, i, j + 1)) {
                //右
                return true;
            } else if (setWay(map, i - 1, j)) {
                //上
                return true;
            } else if (setWay(map, i, j - 1)) {
                return true;
            } else {
                //说明走不通
                map[i][j] = 3;
                return false;
            }
        } else {
            //如果map[i][j] !=0 可能是 1,2,3
            return false;
        }
    }
}

打印

1 1 1 1 1 1 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 1 1 1 1 
==========================
1 1 1 1 1 1 1 
1 2 0 0 0 0 1 
1 2 2 2 0 0 1 
1 1 1 2 0 0 1 
1 0 0 2 0 0 1 
1 0 0 2 0 0 1 
1 0 0 2 2 2 1 
1 1 1 1 1 1 1 

最短路径问题 全部思路都做一遍 然后找出最小得

递归 - 八皇后问题
八皇后问题介绍

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。


八皇后问题
八皇后问题算法思路分析

1.第一个皇后先放第一行第一列
2.第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、3.第三列、依次把所有列都放完,找到一个合适
继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
4.当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
5.然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤 【示意图】

说明:理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列

代码实现

package cn.icanci.datastructure.recursion;

/**
 * @Author: icanci
 * @ProjectName: AlgorithmAndDataStructure
 * @PackageName: cn.icanci.datastructure.recursion
 * @Date: Created in 2020/3/3 22:10
 * @ClassAction: 八皇后问题
 */
public class Queue8 {
    //定义一个max表示共有多少个皇后
    int max = 8;
    //定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
    int[] array = new int[max];
    static int count = 0;
    static int judgeCount = 0;
    public static void main(String[] args) {
        //测试一把 , 8皇后是否正确
        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.printf("一共有%d解法", count);
        // 1.5w
        System.out.printf("一共判断冲突的次数%d次", judgeCount);

    }



    //编写一个方法,放置第n个皇后
    //特别注意: check 是 每一次递归时,进入到check中都有  for(int i = 0; i < max; i++),因此会有回溯
    private void check(int n) {
        //n = 8 , 其实8个皇后就既然放好
        if(n == max) {
            print();
            return;
        }

        //依次放入皇后,并判断是否冲突
        for(int i = 0; i < max; i++) {
            //先把当前这个皇后 n , 放到该行的第1列
            array[n] = i;
            //判断当放置第n个皇后到i列时,是否冲突
            // 不冲突
            if(judge(n)) {
                //接着放n+1个皇后,即开始递归
                check(n+1); 
            }
            //如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
        }
    }

    //查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
    /**
     *
     * @param n 表示第n个皇后
     * @return
     */
    private boolean judge(int n) {
        judgeCount++;
        for(int i = 0; i < n; i++) {
            // 说明
            //1. array[i] == array[n]  表示判断 第n个皇后是否和前面的n-1个皇后在同一列
            //2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
            // n = 1  放置第 2列 1 n = 1 array[1] = 1
            // Math.abs(1-0) == 1  Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
            //3. 判断是否在同一行, 没有必要,n 每次都在递增
            if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) {
                return false;
            }
        }
        return true;
    }

    //写一个方法,可以将皇后摆放的位置输出
    private void print() {
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + " ");
        }
        System.out.println();
    }
}

打印

0 4 7 5 2 6 1 3 
0 5 7 2 6 3 1 4 
0 6 3 5 7 1 4 2 
0 6 4 7 1 3 5 2 
1 3 5 7 2 0 6 4 
1 4 6 0 2 7 5 3 
1 4 6 3 0 7 5 2 
1 5 0 6 3 7 2 4 
1 5 7 2 0 3 6 4 
1 6 2 5 7 4 0 3 
1 6 4 7 0 3 5 2 
1 7 5 0 2 4 6 3 
2 0 6 4 7 1 3 5 
2 4 1 7 0 6 3 5 
2 4 1 7 5 3 6 0 
2 4 6 0 3 1 7 5 
2 4 7 3 0 6 1 5 
2 5 1 4 7 0 6 3 
2 5 1 6 0 3 7 4 
2 5 1 6 4 0 7 3 
2 5 3 0 7 4 6 1 
2 5 3 1 7 4 6 0 
2 5 7 0 3 6 4 1 
2 5 7 0 4 6 1 3 
2 5 7 1 3 0 6 4 
2 6 1 7 4 0 3 5 
2 6 1 7 5 3 0 4 
2 7 3 6 0 5 1 4 
3 0 4 7 1 6 2 5 
3 0 4 7 5 2 6 1 
3 1 4 7 5 0 2 6 
3 1 6 2 5 7 0 4 
3 1 6 2 5 7 4 0 
3 1 6 4 0 7 5 2 
3 1 7 4 6 0 2 5 
3 1 7 5 0 2 4 6 
3 5 0 4 1 7 2 6 
3 5 7 1 6 0 2 4 
3 5 7 2 0 6 4 1 
3 6 0 7 4 1 5 2 
3 6 2 7 1 4 0 5 
3 6 4 1 5 0 2 7 
3 6 4 2 0 5 7 1 
3 7 0 2 5 1 6 4 
3 7 0 4 6 1 5 2 
3 7 4 2 0 6 1 5 
4 0 3 5 7 1 6 2 
4 0 7 3 1 6 2 5 
4 0 7 5 2 6 1 3 
4 1 3 5 7 2 0 6 
4 1 3 6 2 7 5 0 
4 1 5 0 6 3 7 2 
4 1 7 0 3 6 2 5 
4 2 0 5 7 1 3 6 
4 2 0 6 1 7 5 3 
4 2 7 3 6 0 5 1 
4 6 0 2 7 5 3 1 
4 6 0 3 1 7 5 2 
4 6 1 3 7 0 2 5 
4 6 1 5 2 0 3 7 
4 6 1 5 2 0 7 3 
4 6 3 0 2 7 5 1 
4 7 3 0 2 5 1 6 
4 7 3 0 6 1 5 2 
5 0 4 1 7 2 6 3 
5 1 6 0 2 4 7 3 
5 1 6 0 3 7 4 2 
5 2 0 6 4 7 1 3 
5 2 0 7 3 1 6 4 
5 2 0 7 4 1 3 6 
5 2 4 6 0 3 1 7 
5 2 4 7 0 3 1 6 
5 2 6 1 3 7 0 4 
5 2 6 1 7 4 0 3 
5 2 6 3 0 7 1 4 
5 3 0 4 7 1 6 2 
5 3 1 7 4 6 0 2 
5 3 6 0 2 4 1 7 
5 3 6 0 7 1 4 2 
5 7 1 3 0 6 4 2 
6 0 2 7 5 3 1 4 
6 1 3 0 7 4 2 5 
6 1 5 2 0 3 7 4 
6 2 0 5 7 4 1 3 
6 2 7 1 4 0 5 3 
6 3 1 4 7 0 2 5 
6 3 1 7 5 0 2 4 
6 4 2 0 5 7 1 3 
7 1 3 0 6 4 2 5 
7 1 4 2 0 6 3 5 
7 2 0 5 1 4 6 3 
7 3 0 2 5 1 6 4 
一共有92解法一共判断冲突的次数15720次
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容