Kafka 生产者调优

讲解样例代码中的参数含义:

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("buffer.memory", 67108864);
props.put("batch.size", 131072);
props.put("linger.ms", 100);
props.put("max.request.size", 10485760);
props.put("acks", "1");
props.put("retries", 10);
props.put("retry.backoff.ms", 500);

KafkaProducer<String, String> producer = new KafkaProducer<String, String>(props);

buffer.memory 参数是什么意思?

Kafka的客户端发送数据到服务器,一般都是要经过缓冲的,也就是说,你通过KafkaProducer发送出去的消息都是先进入到客户端本地的内存缓冲里,然后把很多消息收集成一个一个的Batch,再发送到Broker上去的。

image.png

所以这个“buffer.memory”的本质就是用来约束KafkaProducer能够使用的内存缓冲的大小的,他的默认值是32MB。

那么既然了解了这个含义,大家想一下,在生产项目里,这个参数应该怎么来设置呢?

你可以先想一下,如果这个内存缓冲设置的过小的话,可能会导致一个什么问题?

首先要明确一点,那就是在内存缓冲里大量的消息会缓冲在里面,形成一个一个的Batch,每个Batch里包含多条消息。

然后KafkaProducer有一个Sender线程会把多个Batch打包成一个Request发送到Kafka服务器上去。


image.png

那么如果要是内存设置的太小,可能导致一个问题:消息快速的写入内存缓冲里面,但是Sender线程来不及把Request发送到Kafka服务器。

这样是不是会造成内存缓冲很快就被写满?一旦被写满,就会阻塞用户线程,不让继续往Kafka写消息了。

所以对于“buffer.memory”这个参数应该结合自己的实际情况来进行压测,你需要测算一下在生产环境,你的用户线程会以每秒多少消息的频率来写入内存缓冲。

比如说每秒300条消息,那么你就需要压测一下,假设内存缓冲就32MB,每秒写300条消息到内存缓冲,是否会经常把内存缓冲写满?经过这样的压测,你可以调试出来一个合理的内存大小。

batch.size 参数

这个东西是决定了你的每个Batch要存放多少数据就可以发送出去了。

比如说你要是给一个Batch设置成是16KB的大小,那么里面凑够16KB的数据就可以发送了。

这个参数的默认值是16KB,一般可以尝试把这个参数调节大一些,然后利用自己的生产环境发消息的负载来测试一下。

比如说发送消息的频率就是每秒300条,那么如果比如“batch.size”调节到了32KB,或者64KB,是否可以提升发送消息的整体吞吐量。

因为理论上来说,提升batch的大小,可以允许更多的数据缓冲在里面,那么一次Request发送出去的数据量就更多了,这样吞吐量可能会有所提升。

但是这个东西也不能无限的大,过于大了之后,要是数据老是缓冲在Batch里迟迟不发送出去,那么岂不是你发送消息的延迟就会很高。

比如说,一条消息进入了Batch,但是要等待5秒钟Batch才凑满了64KB,才能发送出去。那这条消息的延迟就是5秒钟。

所以需要在这里按照生产环境的发消息的速率,调节不同的Batch大小自己测试一下最终出去的吞吐量以及消息的 延迟,设置一个最合理的参数。

linger.ms,解决一个Batch迟迟无法凑满情况

他的含义就是说一个Batch被创建之后,最多过多久,不管这个Batch有没有写满,都必须发送出去了。

给大家举个例子,比如说batch.size是16kb,但是现在某个低峰时间段,发送消息很慢。

这就导致可能Batch被创建之后,陆陆续续有消息进来,但是迟迟无法凑够16KB,难道此时就一直等着吗?

当然不是,假设你现在设置“linger.ms”是50ms,那么只要这个Batch从创建开始到现在已经过了50ms了,哪怕他还没满16KB,也要发送他出去了。

所以“linger.ms”决定了你的消息一旦写入一个Batch,最多等待这么多时间,他一定会跟着Batch一起发送出去。

避免一个Batch迟迟凑不满,导致消息一直积压在内存里发送不出去的情况。这是一个很关键的参数。

这个参数一般要非常慎重的来设置,要配合batch.size一起来设置。

举个例子,首先假设你的Batch是32KB,那么你得估算一下,正常情况下,一般多久会凑够一个Batch,比如正常来说可能20ms就会凑够一个Batch。

那么你的linger.ms就可以设置为25ms,也就是说,正常来说,大部分的Batch在20ms内都会凑满,但是你的linger.ms可以保证,哪怕遇到低峰时期,20ms凑不满一个Batch,还是会在25ms之后强制Batch发送出去。

如果要是你把linger.ms设置的太小了,比如说默认就是0ms,或者你设置个5ms,那可能导致你的Batch虽然设置了32KB,但是经常是还没凑够32KB的数据,5ms之后就直接强制Batch发送出去,这样也不太好其实,会导致你的Batch形同虚设,一直凑不满数据。

重试机制

“retries”和“retries.backoff.ms”决定了重试机制,也就是如果一个请求失败了可以重试几次,每次重试的间隔是多少毫秒。

这个大家适当设置几次重试的机会,给一定的重试间隔即可,比如给100ms的重试间隔。

持久化机制

Ack三个选项,0表示不需要任何分区确认收到,发送端就认为是成功的,1表示只要主分区确认接收成功就认为是成功的,all表示主分区和从分区都确认收到请求才认为是成功的

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容

  • Kafka producer config (Kafka 0.10.1 Documentation) 1. 基本...
    Java及SpringBoot阅读 1,694评论 0 1
  • 引言 在实际的kafka开发中,我们会发现,无论是生产者还是消费者,都需要构建一个Properties对象,里面设...
    撸码小丑阅读 2,065评论 1 3
  • 1、代码例子 2、消息发送流程 3、常见的参数 3.1、 默认值是32MB 1、Kafka的客户端发送数据到服务...
    qwer__阅读 507评论 0 0
  • 逗猪图~~某群,群主经常离家出走,今画逗猪图一乐。碗子2017.9.18
    瘦人碗子阅读 333评论 0 1
  • 写文章不难,难的是写作文标题。就像读书时代,宁愿写命题作文,也不要写那种“题目自拟”的文章。那时候碰到这种文...
    佘_冬冬阅读 203评论 0 2