计算机网络中的TCP/UDP协议到底是怎么回事(二)

文章来源简书:http://www.jianshu.com/p/eab86c0d1612

上一篇博客阐述了TCP/IP五层网络结构模型以及一些关于TCP、UDP的基础知识,这篇博客会接着写一些关于TCP拥塞控制的算法以及对TCP中常有的疑问进行解答。

TCP拥塞控制

首先了解几个概念,为下面的叙述做铺垫

  • 拥塞窗口(cwnd):TCP拥塞控制中的主要参数,表示发送端下一次最多可以发送的数据分包的个数,是来自发送端的流量控制。
  • 接收端窗口(rwnd):又称通知窗口(Advertise Window),接受端目前每次所能接收的数据分组的最大个数,是来自接收端的流量控制。
  • 慢开始门限(ssthresh):当拥塞窗口增长到慢开始门限时,启动拥塞避免算法(后面会具体阐述)。
  • 拥塞控制常用算法:慢开始、拥塞避免、快重传、快恢复。

最初,发送方不知道接收方的容纳能力,如果初次就发送较大量的数据,极有可能造成整个网络的瘫痪,TCP为了防止此类问题的出现,在通信一开始就会通过一个叫慢开始的算法得到的数值,对发送数据量进行控制。

慢开始:

由于需要考虑拥塞控制和流量控制两个方面的内容,发送端的发送窗口为min(cwnd,rwnd),但是rwnd是由对端确定的,网络环境对其没有影响,所以在考虑拥塞的时候我们一般不考虑rwnd的值,我们暂时只讨论如何确定cwnd值的大小。

在执行慢开始算法时,拥塞窗口 cwnd的初始值为 1,发送第一个报文段。当发送端收到来自接收端的ACK之后,拥塞窗口开始以1、2、4这样的指数形式增长。当拥塞窗口cwnd 增长到慢开始门限值 ssthresh 时,就改为执行拥塞避免算法,拥塞窗口按线性规律增长。

拥塞避免:

最初,拥塞窗口指数增长,可以很快进行大数据的发送,最大限度的利用网络宽带资源。当达到慢开始门限值,开始进入拥塞避免阶段,拥塞窗口开始加法增加。这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。

快重传与快速恢复

上面都没有遇到网络拥塞,当真正遇到网络拥塞时,如何处理呢?当发送方连续收到三个重复的ACK之后,TCP会进入快速重传、快速恢复的阶段。

为什么叫快速重传呢?如果当发送端接收到三个重复的确认ACK时,则断定分组丢失,立即重传丢失的报文段,而不必等待重传计时器超时,相比之下,前者速度更快。

快速恢复的主要步骤:

  • 当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段。
  • 再收到重复的ACK时,拥塞窗口增加1。
  • 当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。
TCP窗口变化

当TCP通信开始之后,网络吞吐量会逐渐上升,但是随着网络拥堵的发生,吞吐量也会急速下降。于是会再次进入吞吐量慢慢上升的过程。但是所谓TCP的吞吐量的特点就好像是在逐渐占领网络宽带的感觉。

TCP疑问解答

为什么采用三次握手而不是二次握手?

client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达server。本来这是一个早已失效的报文段。但server收到此失效的连接请求报文段后,就误认为是client再次发出的一个新的连接请求。于是就向client发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要server发出确认,新的连接就建立了。由于现在client并没有发出建立连接的请求,因此不会理睬server的确认,也不会向server发送数据。但server却以为新的运输连接已经建立,并一直等待client发来数据。这样,server的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,client不会向server的确认发出确认。server由于收不到确认,就知道client并没有要求建立连接。”

TCP三次握手时,第三次握手失败怎么办?

如果三次都成功的话:

  • 客户端发出了SYN包给服务器,客户端进入SYN_SEND状态。
  • 服务器收到SYN包后发出SYN+ACK数据包,服务器进入SYN_RECV状态。
  • 客户端收到SYN+ACK后发出ACK给服务器,客户端进入ESTABLISH状态
  • 服务器收到最后的ACK,服务器进入ESTABLISH状态。

我们了解一下TCP状态转换图和状态伪码可以发现:

case:SYN_RECV状态
    if(收到ACK报文)
        进入ESTABLISH状态
    if(超时)
        发送RTS报文,进入CLOSED状态
    if(收到“关闭报文”)
        发送FIN报文,进入FIN_WAIT_1状态
    if(收到RTS报文)
        进入LISTEN状态
    if(收到其他报文段或报文)
        发出差错报文
    break

当第三次握手失败时的处理操作,可以看出当失败时服务器并不会重传ACK报文,而是直接发送RTS报文段,进入CLOSED状态。这样做的目的是为了防止SYN洪泛攻击。

何为SYN洪泛攻击呢?在TCP连接建立过程中很容易碰到严重的的安全问题,称为SYN洪泛攻击。当一个或多个恶意攻击者向服务器发送大量的SYN报文时,服务器认为不同客户发来了打开请求,于是就回分配资源。然后,服务器向假冒的客户发送SYN+ACK报文,而这些报文都丢失了。如果在第三次握手这段很短的时间内,服务器大量资源被占用而没有被利用,服务器会因为资源耗尽而无法接受合法客户的连接请求。这种SYN洪泛攻击称为拒绝服务攻击的安全攻击,即攻击者用大量的请求垄断一个系统,使这个系统因超载而拒绝为合法的请求提供服务。(更多内容请参考TCP/IP协议簇一书)

关闭连接时半关闭选项的四向握手

TCP连接是全双工的,所以它允许两个方向的数据传输被独立关闭。换言之,通信的一端可以发送结束报文段给对方,告诉它本端已经完成了数据的发送,但允许继续接收来自对方的数据,直到对方也发送结束报文段以关闭连接。TCP连接的这种状态称为半关闭(half close)状态。

当客户端向服务器发送一个FIN报文段后,此连接被半关闭了。服务器发送ACK报文段来接受这个半关闭。但是服务器仍然可以发送数据,当服务器把处理完的数据都发送完毕之后,发送FIN报文段(半关闭),并且被客户发来的ACK予以确认(关闭)。

当关闭连接时最后一个ACK丢失怎么办?

如果最后一个ACK丢失的话,TCP就会认为它的FIN丢失,进行重发FIN。在客户端收到FIN后,就会设置一个2MSL计时器,2MSL计时器可以使客户等待足够长的时间,使得在ACK丢失的情况下,可以等到下一个FIN的到来。如果在TIME-WAIT状态汇总有一个新的FIN到达了,客户就会发送一个新的ACK,并重新设置2MSL计时器。

示例图解如下:

半关闭终止时间图

如果重传FIN到达客户端时,客户端已经进入CLOSED状态时,那么客户就永远收不到这个重传的FIN报文段,服务器收不到ACK,服务器无法关闭连接。

但是服务器并不会一直无法关闭,服务器会进行不断的探查,会发送十个间隔为75秒的探查,如果探查都没有收到回应,则认为客户端已经关闭,服务器也将关闭,终止链接。

PS

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容

  • 计算机网络七层模型中,传输层有两个重要的协议:(1)用户数据报协议UDP (User Datagram Proto...
    Q南南南Q阅读 1,711评论 0 3
  • 本书结构是自顶向下的,所以请按下列顺序阅读: 1.计算机网络自顶向下--应用层2.计算机网络自顶向下--运输层3....
    牛富贵儿阅读 2,740评论 0 3
  • 1.这篇文章不是本人原创的,只是个人为了对这部分知识做一个整理和系统的输出而编辑成的,在此郑重地向本文所引用文章的...
    SOMCENT阅读 13,053评论 6 174
  • 个人认为,Goodboy1881先生的TCP /IP 协议详解学习博客系列博客是一部非常精彩的学习笔记,这虽然只是...
    贰零壹柒_fc10阅读 5,051评论 0 8
  • 传输层-TCP, TCP头部结构 ,TCP序列号和确认号详解 TCP主要解决下面的三个问题 1.数据的可靠传输...
    抓兔子的猫阅读 4,512评论 1 46