简述极大似然估计

极大似然估计是一种参数估计的方法。
先验概率是 知因求果,后验概率是 知果求因,极大似然是 知果求最可能的原因。
即它的核心思想是:找到参数 θ 的一个估计值,使得当前样本出现的可能性最大。

例如,当其他条件一样时,抽烟者患肺癌的概率是不抽烟者的 5 倍,那么当我们已知现在有个人是肺癌患者,问这个人是抽烟还是不抽烟?大多数人都会选择抽烟,因为这个答案是“最有可能”得到“肺癌”这样的结果。


为什么要有参数估计

当模型已定,但是参数未知时。
例如我们知道全国人民的身高服从正态分布,这样就可以通过采样,观察其结果,然后再用样本数据的结果推出正态分布的均值与方差的大概率值,就可以得到全国人民的身高分布的函数。


为什么要使似然函数取最大

极大似然估计是频率学派最经典的方法之一,认为真实发生的结果的概率应该是最大的,那么相应的参数,也应该是能让这个状态发生的概率最大的参数。


极大似然估计的计算过程

  1. 写出似然函数



    其中 x1,x2,⋯,xn 为样本,θ 为要估计的参数。

  2. 一般对似然函数取对数



    因为 f(xi|θ) 一般比较小,n 比较大,连乘容易造成浮点运算下溢。

  3. 求出使得对数似然函数取最大值的参数的值
    对对数似然函数求导,令导数为0,得出似然方程,
    求解似然方程,得到的参数就是对概率模型中参数值的极大似然估计。


例子

假如一个罐子里有黑白两种颜色的球,数目和比例都不知道。
假设进行一百次有放回地随机采样,每次取一个球,有七十次是白球。
问题是要求得罐中白球和黑球的比例?

假设罐中白球的比例是 p,那么黑球的比例就是 1−p。
那么似然函数:


接下来对似然函数对数化:


然后求似然方程:


最后求得 p=0.7


资料:
http://blog.csdn.net/poi7777/article/details/23204789
http://blog.csdn.net/bitcarmanlee/article/details/52201858
http://blog.csdn.net/zouxy09/article/details/8537620
https://zhuanlan.zhihu.com/p/24423230


推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的:
[入门问题][TensorFlow][深度学习][强化学习][神经网络][机器学习][自然语言处理][聊天机器人]

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容