《深度学习框架PyTorch:入门与实践》学习笔记:quick start

作者Github:
https://github.com/chenyuntc/pytorch-book

本节主要包含以下内容:

  1. Tensor: 类似Numpy数组的数据结构,与Numpy接口类似,可方便地互相转换。
  2. autograd/: 为tensor提供自动求导功能。
  3. nn: 专门为神经网络设计的接口,提供了很多有用的功能(神经网络层,损失函数,优化器等)。
  4. 神经网络训练: 以CIFAR-10分类为例演示了神经网络的训练流程,包括数据加载、网络搭建、训练及测试。

通过本节的学习,相信读者可以体会出PyTorch具有接口简单、使用灵活等特点。从下一章开始,本书将深入系统地讲解PyTorch的各部分知识。

这一章总览了一下Pytorch训练神经网络的流程,许多内容先看看就好

引入pytorch包并查看版本

import torch as t
print(t.__version__)

基本对象Tensor

Tensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。Tensor和Numpy的ndarrays类似,但Tensor可以使用GPU进行加速。Tensor的使用和Numpy及Matlab的接口十分相似

Tensor的创建

x = t.Tensor(5, 3) # 输入size,构建 5x3 矩阵,只是分配了空间,未初始化
x = t.Tensor([[1,2],[3,4]])
'''
Out: tensor([[1., 2.], [3., 4.]])
'''

a = t.ones(5) 
'''
新建一个全1的Tensor
Out: tensor([1., 1., 1., 1., 1.])
'''

x = t.rand(5, 3)  
'''
使用[0,1]均匀分布随机初始化二维数组
tensor([[0.9971, 0.4956, 0.7326],
        [0.5040, 0.2773, 0.1133],
        [0.1560, 0.8798, 0.3876],
        [0.8097, 0.8484, 0.6488],
        [0.5509, 0.5815, 0.1071]])
'''

从numpy数组创建和转换

Tensor和Numpy的数组之间的互操作非常容易且快速。对于Tensor不支持的操作,可以先转为Numpy数组处理,之后再转回Tensor。

a = np.ones(5)
b = t.from_numpy(a) # Numpy->Tensor
c = b.numpy() # Tensor->Numpy

由numpy生成的tensor与原先的对象共享内存

b.add_(1) # 以`_`结尾的函数会修改自身
print(a)
print(b) # Tensor和Numpy共享内存
'''
输出结果
[2. 2. 2. 2. 2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
'''

更方便的创建接口

torch.tensor可以接纳不同的数据类型,list, tuple, NumPy ndarray, scalar和其他类型

torch.tensor(data, dtype=None, device=None, requires_grad=False)

需要注意的是,t.tensor()或者tensor.clone()总是会进行数据拷贝,新tensor和原来的数据不再共享内存。所以如果你想共享内存的话,建议使用torch.from_numpy()或者tensor.detach()来新建一个tensor, 二者共享内存。

Tensor的形状

print(x.size()) # 查看x的形状
x.size()[1], x.size(1) # 查看列的个数, 两种写法等价

Tensor的加减

y = t.rand(5, 3)
# 加法的第一种写法
x + y

# 加法的第二种写法
t.add(x, y)

# 指定加法结果的输出目标为result
result = t.Tensor(5, 3) # 预先分配空间
t.add(x, y, out=result) # 输入到result

# 加法的第三种写法
y.add(x) # 普通加法,返回副本不改变y的内容
y.add_(x) # inplace 加法,y变了

注意,函数名后面带下划线_ 的函数会修改Tensor本身。例如,x.add_(y)和x.t_()会改变 x,但x.add(y)和x.t()返回一个新的Tensor, 而x不变。

Tensor的切片与取值

基本与numpy数组类似

# Tensor的选取操作与Numpy类似
print(x[0:2:, 1])
'''
tensor([0.8417, 0.2086])
'''

直接tensor[idx]得到的还是一个tensor: 一个0-dim 的tensor,一般称为scalar。如果你想获取0-dim或1-dim的tensor的元素的值,可以使用.item()

scalar = b[0]
print(scalar,scalar.size(),scalar.item())
'''
tensor(2., dtype=torch.float64) torch.Size([]) 2.0
'''

自动微分autograd

深度学习的算法本质上是通过反向传播求导数,而PyTorch的autograd模块则实现了此功能。在Tensor上的所有操作,autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。
要想使得Tensor使用autograd功能,只需要设置tensor.requries_grad=True.

'''
为tensor设置 requires_grad 标识,就可以对此张量求导
pytorch 会自动调用autograd 记录操作
'''
x = t.ones(2, 2, requires_grad=True)

# 上一步等价于
# x = t.ones(2,2)
# x.requires_grad = True

求某一目标tensor对于标记tensor的梯度,需要对目标变量调用.backward(),然后标记变量的.grad属性即为对应的梯度

z=x.sum()+x.mean()
z.backward()
x.grad
'''
tensor([[1.2500, 1.2500], [1.2500, 1.2500]])
'''

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,.grad中都是将新的梯度加在已有的梯度上,所以反向传播之前需要手动梯度清零。

# 以下划线结束的函数是inplace操作,会修改自身的值,就像add_
x.grad.data.zero_()
'''
tensor([[0., 0.], [0., 0.]])
'''

神经网络

Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用nn.Module实现。LeNet的网络结构如图2-7所示。

作者在后面举得例子开始先不必深究

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352