TensorFlow.js发布:使用JS进行机器学习并在浏览器中运行

TensorFlow官方团队近日发布多个重大更新,其中包括:为python开发者提供的,可以立即评估操作并且无需额外图形构建步骤的eager execution;可以促进机器学习模型可重用部分的发布、发现和使用的TensorFlow Hub;针对移动和嵌入式设备的轻量级解决方案TensorFlow LiteSwift的TensorFlow开源;面向JavaScript开发者的新机器学习框架TensorFlow.js

介绍

TensorFlow.js是为JavaScript开发者准备的开源库,可以使用JavaScript和高级图层API完全在浏览器中定义,训练和运行机器学习模型!如果你是一名机器学习新手,那么TensorFlow.js是开始学习的好方法。

浏览器内的机器学习

在浏览器中完全由客户端运行的机器学习程序将会解锁新的机会,如交互式机器学习!例如下方链接中的吃豆人游戏。

https://github.com/tensorflow/tfjs-examples

使用神经网络将你的摄像头变成PAC-MAN的控制器

如果你想尝试其他游戏,可以使用手机上的浏览器玩Emoji Scavenger Hunt。

https://emojiscavengerhunt.withgoogle.com/

项目:https://github.com/google/emoji-scavenger-hunt

从用户的角度来看,在浏览器中运行的ML意味着不需要安装任何库或驱动程序。只需打开网页,你的程序就可以运行了。此外,它已准备好使用GPU加速运行。TensorFlow.js自动支持WebGL,并在GPU可用时会加速代码。用户也可以通过移动设备打开你的网页,在这种情况下,模型可以利用传感器数据,例如陀螺仪或加速度传感器。最后,所有数据都保留在客户端上,使得TensorFlow.js可用于低延迟推理以及隐私保护程序。

你可以用TensorFlow.js做什么?

如果使用TensorFlow.js进行开发,可以考虑以下三种工作流程。

你可以导入现有的预训练的模型进行推理。如果你有一个现成的TensorFlow或Keras模型,则可以将其转换为TensorFlow.js格式,并将其加载到浏览器中进行推理。

你可以导入的模型进行再训练。就像上面的吃豆人演示一样,你可以使用迁移学习来增强现有预训练好的离线模型(使用在浏览器中收集的少量数据),使用的技术称为图像再训练(Image Retraining)。这是只使用少量数据,快速训练准确模型的一种方法。

直接在浏览器中创作模型。你还可以使用TensorFlow.js,完全在浏览器中使用Javascript和高级层API定义,训练和运行模型。如果你熟悉Keras,那么高级层API应该也会很熟悉。

让我们看看代码

如果你愿意,可以直接到示例或教程开始。

示例:https://github.com/tensorflow/tfjs-examples

教程:http://js.tensorflow.org/

以下内容展示了如何在浏览器中导出用Python定义的模型进行推理,以及如何完全用Javascript定义和训练模型。这是定义一个神经网络来对花朵进行分类的代码片段,就像在TensorFlow.org的入门指南中一样(也就是说分类鸢尾花)。在这里我使用一堆层定义一个模型。

1import * as tffrom ‘@tensorflow/tfjs’;

2const model= tf.sequential();

3model.add(tf.layers.dense({inputShape: [4], units:100}));

4model.add(tf.layers.dense({units:4}));

5model.compile({loss: ‘categoricalCrossentropy’, optimizer: ‘sgd’});

我们在此使用的层API支持在示例目录中能找到的所有Keras层(包括Dense,CNN,LSTM等)。然后,我们可以使用与方法调用相同的 Keras-compatible API来训练我们的模型:

1await model.fit(

2  xData, yData, {

3    batchSize: batchSize,

4    epochs: epochs

5});

这个模型现在可以用来做预测了:

01// Get measurementsfor a new flower to generate a prediction

02// The first argumentis the data,and the secondis the shape.

03const inputData= tf.tensor2d([[4.8,3.0,1.4,0.1]], [1,4]);

04 

05// Get the highest confidence predictionfrom our model

06const result= model.predict(inputData);

07const winner= irisClasses[result.argMax().dataSync()[0]];

08 

09// Display the winner

10console.log(winner);

TensorFlow.js还包含底层API(以前称为deeplearn.js)并支持Eager execution。

TensorFlow.js API

TensorFlow.js如何与deeplearn.js关联?

TensorFlow.js属于JavaScript生态系统,实现其进行机器学习的工具,继承自deeplearn.js(即TensorFlow.js Core)。TensorFlow.js还包含一个Layers API,它是使用Core构建机器学习模型的高级库,并且也是用于自动移植TensorFlow SavedModels和Keras hdf5模型的工具。

本文为编译作品,转载请注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容