Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

摘要:
We present a framework for efficient inference in structured image models that explicitly reason about objects. We achieve this by performing probabilistic inference using a recurrent neural network that attends to scene elements and processes them one at a time. Crucially, the model itself learns to choose the appropriate number of inference steps.

We use this scheme to learn to perform inference in partially specified 2D models (variable-sized variational auto-encoders) and fully specified 3D models (probabilistic renderers).

We show that such models learn to identify multiple objects – counting, locating and classifying the elements of a scene – without any supervision, e.g., decomposing 3D images with various numbers of objects in a single forward pass of a neural network.

We further show that the networks produce accurate inferences when compared to supervised counterparts, and that their structure leads to improved generalization.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 旧寒未去新露冷, 庄生一梦蝶随风。 琴剑不知江湖远, 云雨未实沧海深。 薄茶轻煮且望春, 夜深不曾忆故人。 浮名何...
    一路莺花阅读 1,599评论 0 1
  • cp /etc/apt/sources.list /data/bak/sources.list vim /etc/...
    冰_茶阅读 4,567评论 0 1
  • 纯手工打造每一篇开源资讯与技术干货,数十万程序员和Linuxer已经关注。 需要指出的是,SHA-1加密也被用于签...
    尘世不扰阅读 1,534评论 0 0
  • 这让我想起了一句很经典的话,“鞋子合不合适只有脚知道,人合不合适只有心知道”有些人,看上去美好,适不适合自己只有相...
    王莎莉阅读 2,361评论 0 1