kafka QuickStart

Step 1: Download the code

Download the lastest release and un-tar it

清華鏡像站
http://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.1.0/kafka_2.12-2.1.0.tgz

# tar -xzf kafka_2.12-2.1.0.tgz
# cd kafka_2.12-2.1.0

Step 2: Start the server

Start the Zookeeper server:

# bin/zookeeper-server-start.sh config/zookeeper.properties &

Now start the Kafka server:

# bin/kafka-server-start.sh config/server.properties &

Step 3: Create a topic

Let's create a topic named "test" with a single partition and only one replica:

# bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

We can now see that topic if we run the list topic command:

# bin/kafka-topics.sh --list --zookeeper localhost:2181

...
test

Step 4: Send some messages

Kafka has a command line producer , run the producer and then type a few messages into the console to send to the server.

# bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test

> This is a message
> This is another message

Step 5: Start a consumer

Kafka also has a command line consumer that will dump out messages to standard output.

# bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning

This is a message
This is another message

Step 6: Setting up a multi-broker cluster

First we make a config file for each of the brokers

# cp config/server.properties config/server-1.properties
# cp config/server.properties config/server-2.properties

Now edit these new files and set the following properties:

  • config/server-1.properties:
    broker.id=1
    listeners=PLAINTEXT://localhost:9093
    log.dirs=/tmp/kafka-logs-1
    
  • config/server-2.properties:
    broker.id=2
    listeners=PLAINTEXT://localhost:9094
    log.dirs=/tmp/kafka-logs-2
    

The broker.id property is the unique and permanent name of each node in the cluster.


We already have Zookeeper and our single node started, so we just need to start the two new nodes:

# bin/kafka-server-start.sh config/server-1.properties &
# bin/kafka-server-start.sh config/server-2.properties &

Now create a new topic with a replication factor of three:

# bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic my-replicated-topic

Okay but now that we have a cluster how can we know which broker is doing what? To see that run the "describe topics" command:

# bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic

Topic:my-replicated-topic PartitionCount:1 ReplicationFactor:3 Configs:
Topic: my-replicated-topic Partition: 0 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0

  • "Leader" is the node responsible for all reads and writes for the given partition. Each node will be the leader for a randomly selected portion of the partitions.
  • "Replicas" is the list of nodes that replicate the log for this partition regardless of whether they are the leader or even if they are currently alive.
  • "Isr" is the set of "in-sync" replicas. This is the subset of the replicas list that is currently alive and caught-up to the leader.

Note that in my example node 1 is the leader for the only partition of the topic.

We can run the same command on the original topic we created to see where it is:

# bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic test

Topic:test PartitionCount:1 ReplicationFactor:1 Configs:
Topic: test Partition: 0 Leader: 0 Replicas: 0 Isr: 0

So there is no surprise there—the original topic has no replicas and is on server 0, the only server in our cluster when we created it.


Let's publish a few messages to our new topic:

# bin/kafka-console-producer.sh --broker-list localhost:9093 --topic my-replicated-topic

...
> my test message 1
> my test message 2
> ^C

Now let's consume these messages:

# bin/kafka-console-consumer.sh --bootstrap-server localhost:9094 --from-beginning --topic my-replicated-topic

...
my test message 1
my test message 2
^C

Step 7: Use Kafka Connect to import/export data

First, we'll start by creating some seed data to test with:

# echo -e "foo\nbar" > test.txt

Next, we'll start two connectors running in standalone mode, which means they run in a single, local, dedicated process.We provide three configuration files as parameters.[1]

# bin/connect-standalone.sh config/connect-standalone.properties config/connect-file-source.properties config/connect-file-sink.properties

These sample configuration files, included with Kafka, use the default local cluster configuration you started earlier and create two connectors: the first is a source connector that reads lines from an input file and produces each to a Kafka topic and the second is a sink connector that reads messages from a Kafka topic and produces each as a line in an output file.

During startup you'll see a number of log messages, including some indicating that the connectors are being instantiated. Once the Kafka Connect process has started, the source connector should start reading lines from test.txt and producing them to the topic connect-test, and the sink connector should start reading messages from the topic connect-test and write them to the file test.sink.txt. We can verify the data has been delivered through the entire pipeline by examining the contents of the output file:

# more test.sink.txt

foo
bar

Note that the data is being stored in the Kafka topic connect-test, so we can also run a console consumer to see the data in the topic (or use custom consumer code to process it):

# bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic connect-test --from-beginning

{"schema":{"type":"string","optional":false},"payload":"foo"}
{"schema":{"type":"string","optional":false},"payload":"bar"}
...

The connectors continue to process data, so we can add data to the file and see it move through the pipeline:

# echo Another line>> test.txt

You should see the line appear in the console consumer output and in the sink file.

Step 8: Use Kafka Streams to process data

Kafka Streams is a client library for building mission-critical real-time applications and microservices, where the input and/or output data is stored in Kafka clusters. Kafka Streams combines the simplicity of writing and deploying standard Java and Scala applications on the client side with the benefits of Kafka's server-side cluster technology to make these applications highly scalable, elastic, fault-tolerant, distributed, and much more. This quickstart example will demonstrate how to run a streaming application coded in this library.


  1. The first is always the configuration for the Kafka Connect process, containing common configuration such as the Kafka brokers to connect to and the serialization format for data. The remaining configuration files each specify a connector to create. These files include a unique connector name, the connector class to instantiate, and any other configuration required by the connector.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,319评论 0 10
  • 我原意应该不是这样的。 一 气温急速变换的下午,我本来应该是在咖啡店买一杯咖啡,蹭个热点,然后优雅地撑回伞走回对面...
    车马正简阅读 265评论 0 1
  • 记的我刚上班时,有人羡慕地说:看你们多好啊,有了铁饭碗就不用再担心以后的生活。我想这碗饭能否维持自己以后的生活...
    暗香疏影手笔阅读 989评论 2 12
  • 章节一、门派 轩悯南自幼无父无母,独自一人住在山林之中。不少人上山砍柴,都误认他为妖,人人害怕。便没人上山去了。
    吾月月月阅读 308评论 0 1
  • 第五回:一波又起 书接上回:疑云 南国国殿皇庭之上,经过几日恢复休整,皇庭之上再无血迹,但门庭却守卫森严,几近苛刻...
    白禾先生阅读 420评论 3 3