【Keras】用Anaconda安装Keras,并在IDE(VScode)+jupyter中运行

版权声明:小博主水平有限,希望大家多多指导。

1、注意!!!

Keras的运行依赖于后端,一般有Tensorflow、Theano和CNTK三种。根据主流,推荐安装TensorFlow作为Keras的backend。

所以,先安装TensorFlow,再在tensorflow的虚拟环境中安装Keras


2、参考:

1、anaconda 下安装tensorflow & keras - qy13913453196的博客 - CSDN博客

https://blog.csdn.net/qy13913453196/article/details/82589792​blog.csdn.net

3、Windows+Anaconda下搭建Keras环境 - qq_22885109的博客 - CSDN博客

https://blog.csdn.net/qq_22885109/article/details/80995134​blog.csdn.net


3、安装教程

【1】安装tensorflow

怎么安装tensorflow?我写了专门的博客:

BG大龍:【TensorFlow】用Anaconda安装tensorflow,并在IDE(VScode)运行​zhuanlan.zhihu.com


【2】激活tensorflow虚拟环境,在该tensorflow的虚拟环境下安装Keras

激活环境,在cmd中输入:conda activate tensorflow_env

在cmd中输入:pip install keras

出现安装信息,自从清华的镜像通道被美国在2019.5.16封了,只能访问国外网站下载,所以,慢慢等待进度条……

也许,你会遇到这样的报错,没关系,重新输入pip install keras 就可以

image

直到你看到了这个,说明成功了


【3】在命令行中验证

激活环境,在cmd中输入:conda activate tensorflow_env

image

在cmd中输入:python
再输入:import keras
会出现“Using TensorFlow backend”,说明成功


【4】在基于tensorflow环境的jupyter网页中验证()

输入:import keras
会如下出现“Using TensorFlow backend”,说明成功


【5】跑一下实际例子,来验证

(1)这里给出官方链接——keras中文文档
Keras:基于Python的深度学习库 - Keras中文文档

Keras:基于Python的深度学习库 - Keras中文文档​keras-cn.readthedocs.io

(2)该例子来自于:

Sequential model - Keras中文文档 Sequential model - Keras中文文档

image

MLP的二分类代码:
有一个亲测后的小细节:我用的VScode作为python的IDE,如activation="relu",必须双引号。
而用pycharm作为python的IDE,如activation='relu',必须单引号。

import numpy as np
import tensorflow as keras
from keras.models import Sequential
from keras.layers import Dense, Dropout

# Generate dummy data
x_train = np.random.random((1000, 20))
y_train = np.random.randint(2, size=(1000, 1))
x_test = np.random.random((100, 20))
y_test = np.random.randint(2, size=(100, 1))

model = Sequential()
model.add(Dense(64, input_dim=20, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(64, activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(1, activation="sigmoid"))

model.compile(loss="binary_crossentropy",
              optimizer="rmsprop",
              metrics=["accuracy"])
model.fit(x_train, y_train,
          epochs=20,
          batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)

运行结果:

Epoch 1/20
1000/1000 [==============================] - 1s 882us/step - loss: 0.7117 - acc: 0.5040
Epoch 2/20
1000/1000 [==============================] - 0s 39us/step - loss: 0.7049 - acc: 0.5020
Epoch 3/20
1000/1000 [==============================] - 0s 43us/step - loss: 0.7016 - acc: 0.5000
Epoch 4/20
1000/1000 [==============================] - 0s 39us/step - loss: 0.7031 - acc: 0.5260
Epoch 5/20
1000/1000 [==============================] - ETA: 0s - loss: 0.7046 - acc: 0.515 - 0s 41us/step - loss: 0.7024 - acc: 0.4930
Epoch 6/20
1000/1000 [==============================] - 0s 52us/step - loss: 0.6999 - acc: 0.5040
Epoch 7/20
1000/1000 [==============================] - 0s 47us/step - loss: 0.6974 - acc: 0.5150
Epoch 8/20
1000/1000 [==============================] - 0s 40us/step - loss: 0.6937 - acc: 0.5250
Epoch 9/20
1000/1000 [==============================] - 0s 39us/step - loss: 0.6912 - acc: 0.5260
Epoch 10/20
1000/1000 [==============================] - 0s 37us/step - loss: 0.6891 - acc: 0.5260
Epoch 11/20
1000/1000 [==============================] - 0s 41us/step - loss: 0.6919 - acc: 0.5210
Epoch 12/20
1000/1000 [==============================] - 0s 43us/step - loss: 0.6926 - acc: 0.5190
Epoch 13/20
1000/1000 [==============================] - 0s 44us/step - loss: 0.6897 - acc: 0.5350
Epoch 14/20
1000/1000 [==============================] - 0s 41us/step - loss: 0.6940 - acc: 0.5140
Epoch 15/20
1000/1000 [==============================] - 0s 44us/step - loss: 0.6928 - acc: 0.5300
Epoch 16/20
1000/1000 [==============================] - 0s 56us/step - loss: 0.6925 - acc: 0.5360
Epoch 17/20
1000/1000 [==============================] - 0s 50us/step - loss: 0.6906 - acc: 0.5400
Epoch 18/20
1000/1000 [==============================] - 0s 44us/step - loss: 0.6882 - acc: 0.5330
Epoch 19/20
1000/1000 [==============================] - 0s 37us/step - loss: 0.6923 - acc: 0.5420
Epoch 20/20
1000/1000 [==============================] - 0s 40us/step - loss: 0.6893 - acc: 0.5280
100/100 [==============================] - 0s 10us/step

祝,学习好运……

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350