openCV:图像的平滑去噪

基本概念

高频信息与低频信息

低频就是颜色缓慢变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域。相反高频即灰度变化快,相邻区域的灰度差别大,例如边缘,噪点都是灰度变化快的区域。

图像平滑

图像平滑是要突出图像的低频成分、主干部分或抑制图像噪声和干扰高频成分的图像处理方法,目的是使图像亮度平缓渐变,减小突变梯度,改善图像质量。字面意思就是让图像上颜色灰度变化更光滑。我们也称图像平滑为图像模糊,因为在平滑的时候,也失去了尖锐的特点。

图像去噪

现实中的数字图像在数字化和传输过程中常受到成像设备与外部环境噪声干扰等影响,称为含噪图像或噪声图像。那么除去这些噪声的过程就是图像去噪。

图像去噪平滑常见算法

import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 

def cv_showimg(name,img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    
img = cv2.imread('lenaNoise.png')
cv_showimg('img',img)
原始图像.PNG

均值滤波

均值滤波也成线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用原图像中某个像素临近值的均值代替原图像中的像素值。即滤波器的核(kernel)中所有的系数都相等,然后用该核去对图像做卷积。

  • 优点: 在一定程度上拉小灰度差异,减少噪声影响。对高斯噪声的表现比较好。
  • 缺点: 对图像的边缘处也做均值,导致边缘处变模糊。对椒盐噪声的表现比较差。
blur = cv2.blur(img, (3, 3))
cv_showimg('blur',blur)
均值滤波.PNG

方框滤波

基本和均值一样,即滤波器的核(kernel)中所有的系数都相等。但是它可以选择是否归一化,如果归一化,则和均值滤波毫无差别;若不选择归一化,则会导致像素点的值超过255,发生越界。

# -1表示输出图像和原图像在颜色通道上一致
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  
cv_showimg('box',box)
归一化方框滤波.PNG
box = cv2.boxFilter(img,-1,(3,3), normalize=False)  
cv_showimg('box',box)
方框滤波-越界.PNG

高斯滤波

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的,离得越近的像素点发挥的作用越大。

高斯核主要取决于σ。如果σ越小,高斯分布中心区域更加聚集,平滑效果越差;反之,则更离散,平滑效果越明显。

aussian = cv2.GaussianBlur(img, (5, 5), 75)  
cv_showimg('aussian',aussian)
高斯滤波.PNG

中值滤波

中值滤波器,使用滤波器窗口包含区域的像素值的中值来得到窗口中心的像素值。是一种非线性平滑滤波器。在去噪同时,较好的保持边缘轮廓细节,适合处理椒盐噪声,但对高斯噪声效果不好。

median = cv2.medianBlur(img, 5) 
cv_showimg('median',median)
中值滤波.PNG

双边滤波

双边滤波器是一种可以保边去噪的滤波器,也是一种加权平均滤波器,与高斯滤波不同的是,其滤波核是由两个函数构成,一个函数是由几何空间距离决定滤波器系数,另一个由像素差值决定滤波器系数。
适合处理高斯噪声,但对椒盐噪声基本不起任何作用。

# 5是邻域直径,两个75分别是空间高斯函数标准差、灰度值相似性高斯函数标准差
double = cv2.bilateralFilter(img,5,75,75)
cv_showimg('double',double)
双边滤波.PNG
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容

  • 本博客内容来源于网络以及其他书籍,结合自己学习的心得进行重编辑,因为看了很多文章不便一一标注引用,如图片文字等侵权...
    开飞机的乔巴阅读 8,524评论 1 8
  • (数字图像冈萨雷斯第二版教材)纯手打!给个赞吧! 一、基本原理 图像的读取、存储操作: 图像显示的⽅法及区别: 图...
    愉快先生阅读 6,587评论 0 6
  • 一世英名 一根烟 一次美丽 一人间 河里的,无边滂沱 是忧郁的眼睛,莫测的远古 咸咸的音乐响起 心里有片海,很湛蓝...
    文峰_001阅读 193评论 0 3
  • 辗转反侧难入眠, 端杯携酒坐窗前。 夜色苍茫心难静, 对面灯光次第关。 太他妈注意平仄了,没写出心情。
    佟晓渭阅读 185评论 0 2
  • 点击蓝色字体如何在听课评课中提升自己 观点市四中第二十期凤鸣沙龙网络直播!下午4:10不见不散!错过直...
    宋闯军阅读 1,501评论 0 4