三 (3.2) Opencv效果实现 - 人脸检测

在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征。

在OpenCV中,使用已经训练好的XML格式的分类器进行人脸检测。在OpenCV的安装目录下的sources文件夹里的data文件夹里可以看到下图所示的内容:

image.png

上图中文件夹的名字“haarcascades”、“hogcascades”和“lbpcascades”分别表示通过“haar”、“hog”和“lbp”三种不同的特征而训练出的分类器:即各文件夹里的文件。"haar"特征主要用于人脸检测,“hog”特征主要用于行人检测,“lbp”特征主要用于人脸识别。打开“haarcascades”文件夹,如下图所示

image.png

图中的XML文件即是我们人脸检测所需要的分类器文件。在实际使用中,推荐使用上图中被标记的“haarcascade_frontalface_alt2.xml”分类器文件,准确率和速度都比较好。

图片中的人脸检测

//头文件
#include<opencv2/objdetect/objdetect.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
 
using namespace cv;
 
//人脸检测的类
CascadeClassifier faceCascade;
 
int main()
{
    faceCascade.load("../data/haarcascade_frontalface_alt2.xml");   //加载分类器,注意文件路径
 
    Mat img = imread("../data/PrettyGirl.jpg");
    Mat imgGray;
    vector<Rect> faces;
 
    if(img.empty())
    {
      return 1;
    }
 
    if(img.channels() ==3)
    {
       cvtColor(img, imgGray, CV_RGB2GRAY);
    }
    else
    {
       imgGray = img;
    }
 
    faceCascade.detectMultiScale(imgGray, faces, 1.2, 6, 0, Size(0, 0));   //检测人脸
 
    if(faces.size()>0)
    {
       for(int i =0; i<faces.size(); i++)
       {
           rectangle(img, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), 
                           Scalar(0, 255, 0), 1, 8);    //框出人脸位置
       }
    }
 
    imshow("FacesOfPrettyGirl", img);
 
    waitKey(0);
    return 0;
}

视频/摄像头中的人脸检测

//头文件
#include<opencv2/objdetect/objdetect.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
 
using namespace cv;
 
//人脸检测的类
CascadeClassifier faceCascade;
 
int main()
{
    faceCascade.load("../data/haarcascade_frontalface_alt2.xml");   //加载分类器,注意文件路径
 
    VideoCapture cap;  
    cap.open(0);   //打开摄像头
    //cap.open("../data/test.avi");   //打开视频
    Mat img, imgGray;
    vector<Rect> faces;
    int c = 0;
 
    if(!cap.isOpened())
    {
      return 1;
    }
 
    while(c!=27)
    {
        cap>>img;
       if(img.channels() ==3)
       {
          cvtColor(img, imgGray, CV_RGB2GRAY);
       }
       else
       {
          imgGray = img;
       }
 
       faceCascade.detectMultiScale(imgGray, faces, 1.2, 6, 0, Size(0, 0));   //检测人脸
 
       if(faces.size()>0)
       {
          for(int i =0; i<faces.size(); i++)
          {
              rectangle(img, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), 
                              Scalar(0, 255, 0), 1, 8);    //框出人脸位置
          }
       }
    
       imshow("Camera", img);
       c = waitKey(1);
    }
    return 0;
}

人脸检测

【OpenCV人脸识别入门教程之二】人脸检测 - 生活,哭泣着奔向死亡,又放不下理想,挣扎着歌唱 - CSDN博客 https://blog.csdn.net/lsq2902101015/article/details/47057081

OpenCV人脸检测(完整源码+思路) - IT1995的博客 - CSDN博客 https://blog.csdn.net/qq78442761/article/details/61918994

人脸检测是人脸识别的基础,人脸识别的文章:
https://blog.csdn.net/qq78442761/article/details/61918994

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容