基于jieba、TfidfVectorizer、LogisticRegression的搜狐新闻文本分类

学习资源来源:容大教育,致以诚挚的谢意。
重新编辑:潇洒坤

jieba中文叫做结巴,是一款中文分词工具,官方文档链接:https://github.com/fxsjy/jieba
TfidfVectorizer中文叫做词袋向量化模型,是用来文章内容向量化的工具,官方文档链接:http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
LogisticRegression中文叫做逻辑回归模型,是一种基础、常用的分类方法。

建议读者安装anaconda,这个集成开发环境自带了很多包。
到2018年9月1日仍为最新版本的anaconda下载链接: https://pan.baidu.com/s/1pbzVbr1ZJ-iQqJzy1wKs0A 密码: g6ex
官网下载地址:https://repo.anaconda.com/archive/Anaconda3-5.2.0-Windows-x86_64.exe
下面代码的开发环境为jupyter notebook,使用在jupyter notebook中的截图表示运行结果。

0.打开jupyter

在桌面新建文件夹命名为基于TfidfVectorizer的文档分类,如下图所示:

image.png

打开基于TfidfVectorizer的文档分类文件夹,在按住Shift键的情况下,点击鼠标右键,出现如下图所示。
选择在此处打开PowerShell窗口,之后会在此路径下打开PowerShell。
image.png

在PowerShell中输入命令并运行:jupyter notebook
image.png

PowerShell运行命令后,会自动打开网页,点击如下图所示网页中的按钮:
image.png

代码文件重命名为tfidfVectorizerTest,重命名按钮位置如下图所示:
image.png

1.数据准备

训练集共有24000条样本,12个分类,每个分类2000条样本。
测试集共有12000条样本,12个分类,每个分类1000条样本。
数据集下载链接: https://pan.baidu.com/s/1PY3u-WtfBdZQ8FsKgWo_KA 密码: hq5v
下载完成后,将压缩文件包放到基于TfidfVectorizer的文档分类文件夹中,并将其解压到当前文件夹,如下图所示:

image.png

加载训练集到变量train_df中,并打印训练集前5行,代码如下。
read_csv方法中有3个参数,第1个参数是加载文本文件的路径,第2个关键字参数sep是分隔符,第3个关键字参数header是文本文件的第1行是否为字段名。

import pandas as pd

train_df = pd.read_csv('sohu_train.txt', sep='\t', header=None)
train_df.head()

上面一段代码的运行结果如下图所示:


image.png

查看训练集每个分类的名字以及样本数量,代码如下:

for name, group in train_df.groupby(0):
    print(name,len(group))

上面一段代码的运行结果如下图所示:


image.png

加载测试集并查看每个分类的名字以及样本数量,代码如下:

test_df = pd.read_csv('sohu_test.txt', sep='\t', header=None)
for name, group in test_df.groupby(0):
    print(name, len(group))

上面一段代码的运行结果如下图所示:


image.png

载入停顿词赋值给变量stopWord_list,代码如下:

with open('stopwords.txt', encoding='utf8') as file:
    stopWord_list = [k.strip() for k in file.readlines()]

2.分词

需要安装jieba库,cmd中安装命令:pip install jieba
对训练集的24000条样本循环遍历,使用jieba库的cut方法获得分词列表赋值给变量cutWords。
判断分词是否为停顿词,如果不为停顿词,则添加进变量cutWords中。
代码如下:

import jieba
import time

train_df.columns = ['分类', '文章']
stopword_list = [k.strip() for k in open('stopwords.txt', encoding='utf8').readlines() if k.strip() != '']
cutWords_list = []
i = 0
startTime = time.time()
for article in train_df['文章']:
    cutWords = [k for k in jieba.cut(article) if k not in stopword_list]
    i += 1
    if i % 1000 == 0:
        print('前%d篇文章分词共花费%.2f秒' %(i, time.time()-startTime))
    cutWords_list.append(cutWords)

上面一段代码的运行结果如下:

前1000篇文章分词共花费67.62秒
前2000篇文章分词共花费133.32秒
前3000篇文章分词共花费272.28秒
前4000篇文章分词共花费405.01秒
前5000篇文章分词共花费529.79秒
前6000篇文章分词共花费660.60秒
前7000篇文章分词共花费696.51秒
前8000篇文章分词共花费732.88秒
前9000篇文章分词共花费788.51秒
前10000篇文章分词共花费841.61秒
前11000篇文章分词共花费903.35秒
前12000篇文章分词共花费970.47秒
前13000篇文章分词共花费1010.61秒
前14000篇文章分词共花费1048.76秒
前15000篇文章分词共花费1100.81秒
前16000篇文章分词共花费1154.80秒
前17000篇文章分词共花费1207.07秒
前18000篇文章分词共花费1256.73秒
前19000篇文章分词共花费1374.76秒
前20000篇文章分词共花费1493.85秒
前21000篇文章分词共花费1523.02秒
前22000篇文章分词共花费1552.69秒
前23000篇文章分词共花费1598.88秒
前24000篇文章分词共花费1644.56秒

从上面的运行结果可以看出,对24000篇文章进行分词共使用1644秒,即27分24秒。
时间充裕的读者可以自己运行试试,将分词结果保存为本地文件cutWords_list.txt,代码如下:

with open('cutWords_list.txt', 'w') as file: 
    for cutWords in cutWords_list:
        file.write(' '.join(cutWords) + '\n')

上面一段代码大概5秒左右运行完成,本文作者提供已经分词完成的文本文件。
读者节省时间可以下载,链接: https://pan.baidu.com/s/1vCBeHNR6DEGSQQDvA7yQOw 密码: j49q
下载文件是单个文本文件压缩的zip文件,文件大小为50M。
压缩的zip文件解压后的文本文件大小为118M。
载入分词文件的代码如下:

with open('cutWords_list.txt') as file:
    cutWords_list = [k.split() for k in file.readlines()]

3.TfidfVectorizer模型

调用sklearn.feature_extraction.text库的TfidfVectorizer方法实例化模型对象。
TfidfVectorizer方法需要4个参数。
第1个参数是分词结果,数据类型为列表,其中的元素也为列表;
第2个关键字参数stop_words是停顿词,数据类型为列表;
第3个关键字参数min_df是词频低于此值则忽略,数据类型为int或float;
第4个关键字参数max_df是词频高于此值则忽略,数据类型为Int或float。
查看TfidfVectorizer方法的更多参数用法,官方文档链接:http://sklearn.apachecn.org/cn/0.19.0/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer(cutWords_list, stop_words=stopWord_list, min_df=40, max_df=0.3)

4.特征工程

程序运行时占电脑内存的情况如下图所示:


image.png

从上图可以看出,此程序占3384MB内存,所以电脑需要较高的内存配置,
第1行代码查看向量化的维数,即特征的维数;
第2行代码调用TfidfVectorizer对象的fit_transform方法获得特征矩阵赋值给X;
第3行代码查看特征矩阵的形状。

X = tfidf.fit_transform(train_df[1])
print('词表大小:', len(tfidf.vocabulary_))
print(X.shape)

上面一段代码的运行结果如下:

词表大小: 3946
(24000, 3946)

5.模型训练

5.1 标签编码

调用sklearn.preprocessing库的LabelEncoder方法对文章分类标签编码
最后一行代码查看预测目标的形状。

from sklearn.preprocessing import LabelEncoder
import pandas as pd

train_df = pd.read_csv('sohu_train.txt', sep='\t', header=None)
labelEncoder = LabelEncoder()
y = labelEncoder.fit_transform(train_df[0])
y.shape

5.2 逻辑回归模型

调用sklearn.linear_model库的LogisticRegression方法实例化模型对象。
调用sklearn.model_selection库的train_test_split方法划分训练集和测试集。

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2)
logistic_model = LogisticRegression(multi_class='multinomial', solver='lbfgs')
logistic_model.fit(train_X, train_y)
logistic_model.score(test_X, test_y)

上面一段代码的运行结果如下:

0.8754166666666666

5.3 保存模型

保存模型需要先安装pickle库,安装命令:pip install pickle
调用pickle库的dump方法保存模型,需要2个参数。
第1个参数是保存的对象,可以为任意数据类型,因为有3个模型需要保存,所以下面代码第1个参数是字典。
第2个参数是保存的文件对象,数据类型为_io.BufferedWriter

import pickle

with open('tfidf.model', 'wb') as file:
    save = {
        'labelEncoder' : labelEncoder,
        'tfidfVectorizer' : tfidf,
        'logistic_model' : logistic_model
    }
    pickle.dump(save, file)

本文作者提供自己完成的模型持久化文件,下载链接: https://pan.baidu.com/s/1JIA_E-S3PotAGY4oLqy93w 密码: e3yk
压缩文件大小:188.8M
解压后的模型文件大小:498.9M

5.4 交叉验证

在进行此步的时候,不需要运行此步之前的所有步骤,即可以重新运行jupyter notebook。
调用pickle库的load方法加载保存的模型对象,代码如下:

import pickle

with open('tfidf.model', 'rb') as file:
    tfidf_model = pickle.load(file)
    tfidfVectorizer = tfidf_model['tfidfVectorizer']
    labelEncoder = tfidf_model['labelEncoder']
    logistic_model = tfidf_model['logistic_model']

调用pandas的read_csv方法加载训练集数据。
调用TfidfVectorizer对象的transform方法获得特征矩阵。
调用LabelEncoder对象的transform方法获得预测目标值。
代码如下:

import pandas as pd

train_df = pd.read_csv('sohu_train.txt', sep='\t', header=None)
X = tfidfVectorizer.transform(train_df[1])
y = labelEncoder.transform(train_df[0])

调用sklearn.linear_model库的LogisticRegression方法实例化逻辑回归模型对象。
调用sklearn.model_selection库的ShuffleSplit方法实例化交叉验证对象。
调用sklearn.model_selection库的cross_val_score方法获得交叉验证每一次的得分。
最后打印每一次的得分以及平均分,代码如下:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score

logistic_model = LogisticRegression(multi_class='multinomial', solver='lbfgs')
cv_split = ShuffleSplit(n_splits=5, test_size=0.3)
score_ndarray = cross_val_score(logistic_model, X, y, cv=cv_split)
print(score_ndarray)
print(score_ndarray.mean())

上面一段代码的运行结果如下:

[0.86819444 0.87430556 0.86861111 0.87 0.87430556]
0.8710833333333333

6.模型评估

绘制混淆矩阵,代码如下:

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
from sklearn.metrics import confusion_matrix
import pandas as pd

train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2)
logistic_model = LogisticRegressionCV(multi_class='multinomial', solver='lbfgs')
logistic_model.fit(train_X, train_y)
predict_y = logistic_model.predict(test_X)
pd.DataFrame(confusion_matrix(test_y, predict_y), 
             columns=labelEncoder.classes_, 
             index=labelEncoder.classes_)

上面一段代码的运行结果如下图所示:


image.png

绘制precision、recall、f1-score、support报告表,代码如下:

import numpy as np
from sklearn.metrics import precision_recall_fscore_support

def eval_model(y_true, y_pred, labels):
    # 计算每个分类的Precision, Recall, f1, support
    p, r, f1, s = precision_recall_fscore_support(y_true, y_pred)
    # 计算总体的平均Precision, Recall, f1, support
    tot_p = np.average(p, weights=s)
    tot_r = np.average(r, weights=s)
    tot_f1 = np.average(f1, weights=s)
    tot_s = np.sum(s)
    res1 = pd.DataFrame({
        u'Label': labels,
        u'Precision': p,
        u'Recall': r,
        u'F1': f1,
        u'Support': s
    })
    res2 = pd.DataFrame({
        u'Label': ['总体'],
        u'Precision': [tot_p],
        u'Recall': [tot_r],
        u'F1': [tot_f1],
        u'Support': [tot_s]
    })
    res2.index = [999]
    res = pd.concat([res1, res2])
    return res[['Label', 'Precision', 'Recall', 'F1', 'Support']]

predict_y = logistic_model.predict(test_X)
eval_model(test_y, predict_y, labelEncoder.classes_)

上面一段代码的运行结果如下图所示:


image.png

7.模型测试

模型测试,即对一个全新的测试集进行预测。
调用pandas库的read_csv方法读取测试集文件。
调用TfidfVectorizer对象的transform方法获得特征矩阵。
调用LabelEncoder对象的transform方法获得预测目标值。
下面一段代码能够成功运行的前提,是本文第5.4节和第6节已经运行。

import pandas as pd

test_df = pd.read_csv('sohu_test.txt', sep='\t', header=None)
test_X = tfidfVectorizer.transform(test_df[1])
test_y = labelEncoder.transform(test_df[0])
predict_y = logistic_model.predict(test_X)
eval_model(test_y, predict_y, labelEncoder.classes_)

上面一段代码的运行结果如下图所示:


模型测试结果.png

8.结论

本文是作者第2个NLP小型项目,训练集数据共有24000条,测试集数据共有12000条。
经过交叉验证,模型平均得分为0.8711
模型评估时,使用LogisticRegressionCV模型,得分提高了3%,为0.9076
最后在测试集上的f1-score指标为0.8990,总体来说这个分类模型较优秀,能够投入实际应用。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容