关于Spark RDD API中的Checkpointing

什么是Checkpointing

Checkpointing可以将RDD从其依赖关系中抽出来,保存到可靠的存储系统(例如HDFS,S3等), 即它可以将数据和元数据保存到检查指向目录中。 因此,在程序发生崩溃的时候,Spark可以恢复此数据,并从停止的任何地方开始。

Checkpointing分为两类:

  • reliable,容错性优先。这种类型的检查点可确保数据永久存储,如在HDFS或其他分布式文件系统上。 这也意味着数据通常会在网络中复制,这会降低检查点的运行速度
  • local,性能优先。 RDD持久保存到执行程序中的本地存储。 因此,数据写得更快,但本地存储也不是完全可靠的,一旦数据丢失,工作将无法恢复。==一般用于需要定期截取且拥有较长的lineage关系的RDD==,例如,GraphX。

开发人员可以是来 ==RDD.checkpoint()== 方法来设置检查点。
在使用检查点之前,必须使用 SparkContext.setCheckpointDir(directory: String) 方法设置检查点目录。

<font color=darkb><b>Checkpointing waits until the end of a job, and launches another job to finish checkpoint. An RDD which needs to be checkpointed will be computed twice; thus it is suggested to do a rdd.cache() before rdd.checkpoint().

强烈建议在启用RDD检查点之前,先将其persist到内存中,否则,在它存到文件之前,需要重新计算一次。

为什么使用Checkpointing

RDD的检查点机制就好比Hadoop将中间计算值存储到磁盘,即使计算中出现了故障,我们也可以轻松地从中恢复。通过对 RDD 启动检查点机制可以实现容错和高可用。

  • 在Spark Streaming程序中,如果某些数据已经在队列中等待处理,由于某些原因我们的应用程序崩溃,当我们再次启动时,则无需再次读取这些数据,并且数据不会丢失。

  • 如果我们的应用程序正在使用任何有状态操作,那么检查点是必需的,否则一旦应用程序崩溃,所有状态都将丢失。

哪些RDD需要使用Checkpointing

  • 计算需要很长时间
  • 计算链太长了
  • 依赖于于太多的父RDD

Checkpointing和Cache的区别

Cache和Checkpointing之间存在显着差异。Cache可以物理化RDD并将其保留在内存(和/或磁盘)中。但是它会==记住RDD的依赖关系(lineage)==,因此就算存在节点故障导致部分缓存的RDD丢失,它们可以被重新生成。

Checkpointing仅将RDD数据保存到HDFS文件中,而==忽略依赖关系==。

此外,rdd.persist(StorageLevel.DISK_ONLY)也与checkpoint不同。通过前者可以将RDD分区持久化到磁盘,分区由blockManager管理。一旦驱动程序完成,这意味着CoarseGrainedExecutorBackend所在的线程停止,blockManager将停止,缓存到磁盘的RDD将被删除(blockManager使用的本地文件将被删除)。但检查点会将RDD保留到HDFS或本地目录。如果没有手动删除,它们将始终位于磁盘上,因此下一个驱动程序可以使用它们。

参考资料

cache and checkpoint
Checkpointing in Spark
Apache Spark: Caching and Checkpointing Under the Hood
Spark RDD Checkpointing

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351