深度学习第二天--卷积神经网络

    昨天是学习深度学习的第二天,学习到了一个很重要的现代神经网络--卷积神经网络,就是它开启了对于现代神经网络的第三次研究。

    卷积神经网络是什么个意思了?就是在之前所讲的神经网络之前,现加入一些卷积层,对网络的输入先进行一个预处理的过程。在这里说明一下,卷积神经网络主要应用在图像识别上面,吴恩达在谷歌主要做的工作就是这个。我们对一张简单的图像进行一个预处理后,会得到我们用人眼,人脑所不能体会到的一些特征,这些特征甚至我们都不能对其进行描述。我们都知道机器学习的一个很重要的环节就是认为为其打标签,也就是为图像添加一定的特征,让计算机能够识别到这些特征。比如说,有耳朵的是猫,有四条腿的是猫,有两个眼睛的是猫......在满足了一切标签之后就可以判断出来这是不是一只猫。卷积神经网络可以为我们自动提取标签,这是其最主要的功能。

      在网络中,经过了一次卷积之后,会得到一些特征;再经过次卷积又会得到一些更为清晰,明显的特征,经过多次卷积过后就会得到比较完整的特征。在将其输入到我们的传统网络中去进行处理,判断。我们在这里将传统网络的哪几层连接称为全连接层(FC)。

      卷积的过程很复杂,在将图片进行数字化过后,一般会得到一个3维矩阵,三原色嘛,每个颜色都有对应着一个矩阵,这三个矩阵是放在一起的。卷积的时候对某一块小的三维矩阵进行卷积,卷积也就是要和对应的一个三维矩阵分别进行对应项相乘在相加,之后在加上预先设置的一个偏置项,就获得了一个特征图的一个数。之后,再对另一块小的三维矩阵进行卷积,再获得一个数。不断的平移(包括上下左右),就会获得一个较大的二维数组。这个三维矩阵是通过矩阵平移获得的。每次平移都是一样的,这都是预先设置好的规定。当然,考虑到对于图形数据的充分利用,而且,每次平移的时候会有两个三维矩阵重叠的地方,我们会对图形进行一定的扩充,当然扩充也就是用0来填充。为了让每个数据都可以利用均等的次数。我们前面讲的对于三维矩阵进行卷积是和另一个三维矩阵。我们称另一个三维矩阵为过滤器filter,每次卷积都对应着同一个filter。当然我们在同一层卷积操作上可以经过多次filter,一个filter获得一个特征图,n个filter就获得n个特征图。在加上每次filter所获得的特征图就可以组成一个新的三维矩阵。它将作为下一次操作的输入值。

       卷积神经网络的内容是在太多,其余内容明天在继续复习。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容

  • 在七月初时有幸参与凉水井中学的新生入学培训直播,在整个过程中初三的一个女学生承担着小主播的身份。这个女生为看直播的...
    彭超奇阅读 297评论 0 1
  • 完成每天的工作后,唐小茴都会熄了灯,让眼睛适应这种黑暗。 疲惫的时候是说不出话来的,然后她顺势依偎在已经上床的辛先...
    唐小茴阅读 127评论 0 0
  • 网上一篇文章《米脂惊魂》曝光出了米脂砍杀事件的另外一幕,文章中写到犯罪嫌疑人赵泽伟“近一段时间以来,他都把自己关在...
    霸道横行阅读 2,330评论 7 5
  • 吃饭是我们每天的必修课, 妈妈最常嘱咐的话就是那句“好好吃饭”。 然而我们或许会为一顿火锅排两个小时的队, 却总是...
    Holiday历险记阅读 689评论 5 5
  • 终端进入/Applications这个目录,看看里面有什么新建的文件,特别是名称很奇怪的。 把这些文件或目录删除,...
    flairpower阅读 567评论 0 0