cs20si:tensorflow for research 学习笔记1

今年一月份,Stanford大学新开了一门课专门讲如何用tensorflow做科研,这门课从最基础的计算图讲起,扩展到非常流行的算法,如neural style,seq2seq等等,通过课程和作业,能够掌握tensorflow大部分的用法。因为太久没有使用tensorflow了,所以决定学学这门课重新复习一下,这是课程网址github,没有官方的视频,youtube和b站上有其他人根据slide录的视频。

我会学习这门课,然后记录笔记,完成github上的代码作为练习,同时会对代码中一些错误进行修正。

下面是lecture1的学习笔记。

介绍

深度学习后面的数学概念已经存在10多年,但是深度学习框架是最近几年才出来的。现在大量的框架在灵活性上和�便于工业界使用上做了权衡,�灵活性对于科研非常重要,但是对于工业界太慢了,但是换句话说,足够快,能够用于分布式的框架只适用于特别的网络结构,这对科研又不够灵活。这留给了使用者一个矛盾的境地:我们是否应该尝试用没有那么灵活的框架做科研,这样当应用于工业界的时候,我们不必再重新用另外一个框架复现代码;或者是我们是否应该在做研究的时候使用一个框架,在工业界应用的时候使用另外一个完全不同的框架呢?

如果选择前者,那么做研究的时候并不方便尝试很多不同类型的网络,如果选择后者,我们必须要重新复现代码,这容易导致实验结果和工业应用上不同,我们也需要付出很多精力去学习。

TensorFlow的出现希望解决这个矛盾的事情。

什么是TensorFlow?

  • 使用数据流和图来做数值计算的开源软件,用于机器智能

  • 主要是由Google Brain团队开发用于机器学习和深度神经网络的研究

  • 能够应用于广泛的领域

虽然TensorFlow是开源的,但是只有GitHub上的部分是开源的,Google还有一个内部版本,官方说法是Google的内部版本有很多转为其定制的工具和服务,大众没有需求使用,并不是Google�的开源没有诚意,希望如此吧。

为什么使用TensorFlow?

  • Python API,这是大多数深度学习框架都有的

  • 能够使用多个CPU和GPU,最重要的是能够很容易部署到服务器上和移动端,这是很多框架不能做的事

  • 足够灵活,非常低层

  • tensorboard可视化非常好

  • Checkpoints作为实验管理,能够随时保存模型

  • 自动微分

  • 庞大的社区

  • 大量优秀的项目正在使用TensorFlow

Getting Started

tensor

0-d tensor:标量,1-d tensor:向量,2-d tensor:矩阵

数据流图

screenshot.png
import tensorflow as tf
a = tf.add(3, 5)
print(a)
>> Tensor("Add: 0", shape=(), dtype=int32)

并不能得到8,需要开启session,在session中操作能够被执行,Tensor能够被计算,这点有点反人类,跟一般的推断式编程是不同的,比如PyTorch

import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
print(sess.run(a))
sess.close()
>> 8

当然可以使用一种更高效的写法

import tensorflow as tf
a = tf.add(3, 5)
with tf.Session() as sess:
    print(sess.run(a))

当然可以建立更复杂的计算图如下

x = 2
y = 3
add_op = tf.add(x, y)
mul_op = tf.mul(x, y)
useless = tf.mul(x, add_op)
pow_op = tf.pow(add_op, mul_op)
with tf.Session() as sess:
    z, not_useless = sess.run([pow_op, useless])

sess.run调用的时候使用[]来得到多个结果。

也可以将图分成很多小块,让他们在多个CPU和GPU下并行

screenshot.png

可以将计算图的一部分放在特定的GPU或者CPU下

with tf.device('/gpu:2'):
    a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], name='a')
    b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], name='b')
    c = tf.matmul(a, b)

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))

尽量不要使用多个计算图,因为每个计算图需要一个session,而每个session会使用所有的显卡资源,必须要用python/numpy才能在两个图之间传递数据,最好在一个图中建立两个不联通的子图

为什么使用Graph

  1. 节约计算资源,每次运算仅仅只需运行与结果有关的子图

  2. 可以将图分成小块进行自动微分

  3. 方便部署在多个设备上

  4. 很多机器学习算法都能够被可视化为图的结构

以上就是第一个lecture的学习笔记。


本文的内容和代码都在该github

欢迎访问我的博客

欢迎查看我的知乎专栏,深度炼丹

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容

  • 1. 介绍 首先让我们来看看TensorFlow! 但是在我们开始之前,我们先来看看Python API中的Ten...
    JasonJe阅读 11,748评论 1 32
  • 动车上,邻座老大叔的公务包拉链坏了,他在我眼前来回的开开合合,黝黑的手笨戳地操作着。明明我可以帮助他的,在伸手刹那...
    童姥阅读 334评论 1 2
  • 旅游在中国已经成为老百姓生活的一部分。节假日各大旅游景点被踩爆,平日里也经常听到生活中熟知的某某去哪哪旅游的声音。...
    尹丁阅读 645评论 0 4
  • 转眼快到八月底了。我与简书结缘已快两个月了。每天在简书上读读写写成了我生活中的功课。在这里读文读诗读各种故事长各种...
    岷水若风阅读 409评论 2 2