LEBERT:Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter

提出了一种用于中文序列标注的词库增强型BERT,通过Lexicon Adapter layer 将外部词库知识融入到BERT层中

汉语序列标注中在不同层次中融合词汇特征和BERT的比较。为了简单起见,在BERT中只显示了两个转换层,并将句子截断为三个字符。ci表示第i个中文character,wj表示第j个中文word

将词汇整合到了底层,在BERT的transformer层之间集成lexicon信息,通过将一个汉语句子与一个现有词汇进行匹配,将其转换为一个字符-单词对序列。词典适配器用于动态提取最相关的匹配项,每个字符的单词使用字符到单词的双线性注意机制,词典适配器应用于BERT中相邻transformer之间,词典特征和BERT表示通过BERT中的多层编码器充分交互

证实了底层特征集成有助于跨度边界检测和跨度类型确定。

BERT Adapter旨在学习下游任务的任务特定参数。在预先训练好的模型层之间添加适配器,只为特定任务来调整添加的适配器中的参数。

We apply the Lexicon Adapter between the 1-st and 2-nd Transformer in BERT and fine-tune both BERT and pre-trained word embedding during training.

两个主要区别:

  1. LEBERT同时具有character特征和lexicon特征作为给定的输入,汉语句子被转换为一个character-words对序列

  2. transformer之间连接有一个lexicon adapter,将lexicon knowledge整合到Bert中

1. Char-Words Pair Sequence

we first build a Trie based on the D(a Chinese Lexicon D),

2. Lexicon Adapter

对于第i个位置的 char-words 对序列,输入表示为

h(i,c)表示的是character向量,由当前transformer输出,x(i,ws)表示的是word embedding

对于第j个word,从预训练word word embedding 查找表计算

为了对齐两种不同的表示,将查找到的x(ij,w),进行下面的维度计算

为了从所有匹配的单词中找出最相关的单词,引入了character-to-word的注意机制

对于第i个character,其word组合为Vi,和h(i,c),W矩阵计算全局ai,再对于第j个word, a(i,j)*v(ij,w),求和计算后的到z(i,w)

最后得到lexicon的权重信息

3. Lexicon Enhanced BERT

如何 inject lexcion信息在第k层 和 第(k+1)层 Transformer

适配器输入一个character向量和成对的word feature。通过对字符和单词的双线性attention,将lexcion特征加权为一个向量,然后将该向量添加到character向量,然后进行layer normalization.

4. training

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容