研究变量之间的相关性,发现别的重要变量
随/机/森/林(课上)
```
setwd("~/Desktop")
d = read.csv("train.csv",header = TRUE)
View(d)
dc = d[complete.cases(d),]
d0 = d[d$y==0,]
d1 = d[d$y==1,]
d2 = d[d$y==2,]
d3 = d[d$y==3,]
#产生与各类别内变量数量相等的一到十的数值,为之后给数字贴标签做铺垫
label0 = sample(c(1:10),dim(d0[1]),replace = TRUE)
label1 = sample(c(1:10),dim(d1[1]),replace = TRUE)
label2 = sample(c(1:10),dim(d2[1]),replace = TRUE)
label3 = sample(c(1:10),dim(d3[1]),replace = TRUE)
d0_train = d0[label0<=5,]
d0_test = d0[label0>5,]
d1_train = d1[label1<=5,]
d1_test = d1[label1>5,]
d2_train = d2[label2<=5,]
d2_test = d2[label2>5,]
d3_train = d3[label3<=5,]
d3_test = d3[label3>5,]
d_train = rbind(d0_train, d1_train,d2_train, d3_train)
d_test = rbind(d0_test,d1_test,d2_test,d3_test)
library(nnet)
re_log = multinom(y~.-id,data=d_train)
#类似于glm,但生成的模型是面对多种response的逻辑回归
pred_log = predict(re_log,newdata = d_test)
#按照还是上一步的模型跑测试集数据,注意data来源前面写newdata
tab_log = table(d_test$y,pred_log)
#出现类似混淆矩阵看模型。d_test$y是只看test中y
#计算对于0的精确度:左上角除以第一行的总和
library(rpart)
re_id3_mis = rpart(y~.-id,data = d_train)
re_id3 = rpart(y~.-id,data = d_train,method = "class")
library(RWeka)
re_id3 = rpart(y~.-id,data = d_train,method = "class",parms = list(split="information"))
pred_id3 = predict(re_id3,newdata = d_test,type = "class")
re_CART = rpart(y~.-id,data = d_train,method = "class",parms = list(split="gini"),control = rpart.control(cp = 0.0001))
pred_CART = predict(re_CART,newdata = d_test,type = "class")
table(d_test$y,pred_CART)
re_CART$cptable
min = which.min(re_CART$cptable[,4])
min
re_CART_f = prune(re_CART,cp=re_CART$cptable[min,1])
table(d_test$y,pred_CART)
plot(re_CART)
#随机森林
d_train$y = as.factor(d_train$y)
re_rf = randomForest(y~.-id,data=d_train,ntree=5)
pred_rf = predict(re_rf,newdata = d_test,type="prob")
d_train$y[d_train$y>=1]=1
d_test$y[d_test$y>=1]=1
```
蒙卡5.2
```
n=100
#蒙特卡洛仿真
alpha=c()
library(MASS)
for (i in 1:100){
mu1=c(0,0)
sigma1=matrix(c(1,0.5,0.5,1.25),nrow=2)
rand1=mvrnorm(n=100,mu=mu1,sigma=sigma1)
X=rand1[,1]
Y=rand1[,2]
alpha[i]=(var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y))
}
rand1
for (j in 1:100)
{
ran=rand1[sample(c(1:100),100,replace=TRUE),]
#此处从(1:100)指的是要抽取100个数,后一个100指的是要总共抽取100个数
X=ran[,1]
Y=ran[,2]
alpha[j]=(var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y))
#rand1用来储存多元正态分布的新的观测值(满足分布的新值)
#ran是将rand1中的100个数,随机有放回的抽取,形成新的一组response
```
P/C/A K/me/ans P422 10
```
#a
X <- rbind(matrix(rnorm(20*50, mean = 0), nrow = 20),
matrix(rnorm(20*50, mean=0.7), nrow = 20),
matrix(rnorm(20*50, mean=1.4), nrow = 20))
#b
X.pca = prcomp(X)$x
plot(X.pca[,1:2], col=c(rep(1,20), rep(2,20), rep(3,20)))
#c
res = kmeans(X, centers = 3)
true_class = c(rep(1,20), rep(2,20), rep(3,20))
table(res$cluster, true_class)
#d
res = kmeans(X, centers = 2)
true = c(rep(1,20), rep(2,20), rep(3,20))
table(res$cluster, true_class)
#e
res = kmeans(X, centers = 4)
true = c(rep(1,20), rep(2,20), rep(3,20))
table(res$cluster, true_class)
#f
res = kmeans(X.pca[,1:2], centers = 3)
true = c(rep(1,20), rep(2,20), rep(3,20))
table(res$cluster, true_class)
#g
res = kmeans(scale(X), centers = 3)
true = c(rep(1,20), rep(2,20), rep(3,20))
table(res$cluster, true_class)
#h
withss = rep(NA,20)
for (k in 1:length(withss)) {
withss[k] = sum(kmeans(X,k)$withinss)
}
plot(withss)
```
马/氏/距/离
```
d=read.csv("hmeq.csv",na.strings="")
dim(d)
View(d)
dc =d[complete.cases(d),] #remove missing values
dim(dc)
mdist = function(x) #马氏距离function定义
{
t = as.matrix(x) #将x转换为矩阵
p = dim(t)[2] #选择列
m = apply(t,2,mean) #对列求均值
s = var(t) #方差,此步即可获得协方差矩阵
return(mahalanobis(t,m,s))
}
#数据分类
dc1 = dc[dc$BAD==1,] #数据集的第一列是定性变量1/0
dc0 = dc[dc$BAD==0,]
#计算各分组的马氏距离
mdc1 = mdist(dc1[,-c(1,5,6)]) #去除第1,5,6列,因为不是数值型
mdc0 = mdist(dc0[,-c(1,5,6)])
c=qchisq(0.99,10) #卡方分布检验拟合度 异常值,99%的应该服从什么分布,这个临界值是多少
#10是自由度,一共13个变量,减去1,5,6列之后是10个
mdc=mdist(dc[,-c(1,5,6)])
#用马氏距离进行筛选
x1=dc1[mdc1
x0=dc0[mdc0
lg.fit = glm(BAD~.,data=d,family=binomial)
summary(lg.fit$fitted.values)
pred1 = predict(lg.fit,type="response")
pred1[pred1>0.3] <-1 #将上一步的结果归类到以0.3为临界值的分类器中
pred1[pred1<=0.3] <-0
table(pred1,dc$BAD)
library(pROC)
roc(dc$BAD,pred1,plot=TRUE,print.auc=TRUE,legacy.axes=TRUE)
#反应变量,predictor,画出图,标出auc面积,确保横坐标(0,1)排序
```
自己的!决/策/树/随/机/森/林
```
names(heart)
heart$target[heart$target==1]<-"Yes"
heart$target[heart$target==0]<-"No"
set.seed(100)
train<-sample(nrow(heart),0.7*nrow(heart))
theart<-heart[train,]
vheart<-heart[-train,]
#library(rpart)
dtree<-rpart(target~.,data=theart,method="class",parms=list(split="gini"))
printcp(dtree)
print(dtree)
tree<-prune(dtree,cp=dtree$cptable[which.min(dtree$cptable[,"xerror"]),"CP"])
opar<-par(no.readonly=T)
par(mfrow=c(1,2))
#install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(dtree,branch=1,type=4,fallen.leaves=T,cex=0.6,sub="before")
rpart.plot(tree,branch=1,type=4,fallen.leaves=T,cex=0.6,sub="after")
predtree<-predict(tree,newdata=vheart,type="class")
table(vheart$target,predtree,dnn=c("real","predict"))
#随机森林
library("randomForest")
data.index = sample(c(1,2), nrow(heart), replace = T, prob = c(0.7, 0.3))
train_data = heart[which(data.index == 1),]
test_data = heart[which(data.index == 2),]
n<-length(names(train_data))
rate=1
for(i in 1:(n-1)){
set.seed(100)
rf_train<-randomForest(as.factor(train_data$target)~.,data=train_data,mtry=i,ntree=1000)
rate[i]<-mean(rf_train$err.rate)
print(rf_train)
}
rate
plot(rate)
set.seed(100)
rf_train<-randomForest(as.factor(train_data$target)~.,data=train_data,mtry=2,ntree=1000)
plot(rf_train)
set.seed(100)
rf_train<-randomForest(as.factor(train_data$target)~.,data=train_data,mtry=2,ntree=800,importance=TRUE,proximity=TRUE)
importance<-importance(rf_train)
barplot(rf_train$importance[,1],main="importance")
box()
importance(rf_train,type=2)
varImpPlot(x=rf_train,sort=TRUE,n.var=nrow(rf_train$importance))
print(rf_train)
hist(treesize(rf_train))
max(treesize(rf_train));min(treesize(rf_train))
MDSplot(rf_train,train_data$target,palette=rep(1,2),pch=as.numeric(train_data$target))
pred<-predict(rf_train,newdata=test_data)
pred_out_1<-predict(object=rf_train,newdata=test_data,type="prob")
table <- table(pred,test_data$target)
sum(diag(table))/sum(table)
plot(margin(rf_train,test_data$target))
P200 Q2 Q8
We will now derive the probability that a given observation is part of a bootstrap sample. Suppose that we obtain a bootstrap sample from a set of nnobservations.
What is the probability that the first bootstrap observation is not the jth observation from the original sample ? Justify your answer.
1−1/n
What is the probability that the second bootstrap observation is not the jth observation from the original sample ?
1−1/n
Argue that the probability that the jth observation is not in the bootstrap sample is (1−1/n)n(1−1/n)n.
As bootstrapping sample with replacement, we have that the probability that the jth observation is not in the bootstrap sample is the product of the probabilities that each bootstrap observation is not the jth observation from the original sample
(1−1/n)⋯(1−1/n)=(1−1/n)n(1−1/n)⋯(1−1/n)=(1−1/n)n
as these probabilities are independant.
When n=5n=5, what is the probability that the jth observation is in the bootstrap sample ?
We have
P(jth obs in bootstrap sample)=1−(1−1/5)5=0.672.P(jth obs in bootstrap sample)=1−(1−1/5)5=0.672.
When n=100n=100, what is the probability that the jth observation is in the bootstrap sample ?
We have
P(jth obs in bootstrap sample)=1−(1−1/100)100=0.634.P(jth obs in bootstrap sample)=1−(1−1/100)100=0.634.
When n=10000n=10000, what is the probability that the jth observation is in the bootstrap sample ?
We have
P(jth obs in bootstrap sample)=1−(1−1/10000)10000=0.632.P(jth obs in bootstrap sample)=1−(1−1/10000)10000=0.632.
Create a plot that displays, for each integer value of nnfrom 1 to 100000, the probability that the jth observation is in the bootstrap sample. Comment on what you observe.
x<-1:100000
plot(x, 1-(1-1/x)^x)
Q8
We will now perform cross-validation on a simulated data set.
Generate a simulated data set as follows :
set.seed(1)
y<-rnorm(100)
x<-rnorm(100)
y<-x-2*x^2+rnorm(100)
In this data set, what is nn and what is pp? Write out the model used to generate the data in equation form.
Here we have that n=100n=100 and p=2p=2, the model used is
Y=X−2X2+ε.Y=X−2X2+ε.
Create a scatterplot of XX against YY. Comment on what you find.
plot(x, y)
Set a random seed, and then compute the LOOCV errors that result from fitting the following four models using least squares :
Y=β0+β1X+εY=β0+β1X+ε
library(boot)
set.seed(1)
Data<-data.frame(x, y)
fit.glm.1<-glm(y~x)
cv.glm(Data, fit.glm.1)$delta[1]
## [1] 5.890979
Y=β0+β1X+β2X2+εY=β0+β1X+β2X2+ε
fit.glm.2<-glm(y~poly(x, 2))
cv.glm(Data, fit.glm.2)$delta[1]
## [1] 1.086596
Y=β0+β1X+β2X2+β3X3+εY=β0+β1X+β2X2+β3X3+ε
fit.glm.3<-glm(y~poly(x, 3))
cv.glm(Data, fit.glm.3)$delta[1]
## [1] 1.102585
Y=β0+β1X+β2X2+β3X3+β4X4+εY=β0+β1X+β2X2+β3X3+β4X4+ε
fit.glm.4<-glm(y~poly(x, 4))
cv.glm(Data, fit.glm.4)$delta[1]
## [1] 1.114772
Repeat (c) using another random seed, and report your results. Are your results the same as what you got in (c) ? Why ?
set.seed(10)
fit.glm.1<-glm(y~x)
cv.glm(Data, fit.glm.1)$delta[1]
## [1] 5.890979
fit.glm.2<-glm(y~poly(x, 2))
cv.glm(Data, fit.glm.2)$delta[1]
## [1] 1.086596
fit.glm.3<-glm(y~poly(x, 3))
cv.glm(Data, fit.glm.3)$delta[1]
## [1] 1.102585
fit.glm.4<-glm(y~poly(x, 4))
cv.glm(Data, fit.glm.4)$delta[1]
## [1] 1.114772
The results above are identical to the results obtained in (c) since LOOCV evaluates nn folds of a single observation.
Which of the models in (c) had the smallest LOOCV error ? Is this what you expected ? Explain your answer.
We may see that the LOOCV estimate for the test MSE is minimum for “fit.glm.2”, this is not surprising since we saw clearly in (b) that the relation between “x” and “y” is quadratic.
Comment on the statistical significance of the coefficient estimates that results from fitting each of the models in (c) using least squares. Do these results agree with the conclusions drawn based on the cross-validation results ?
summary(fit.glm.4)
##
## Call:
## glm(formula = y ~ poly(x, 4))
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8914 -0.5244 0.0749 0.5932 2.7796
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8277 0.1041 -17.549 <2e-16 ***
## poly(x, 4)1 2.3164 1.0415 2.224 0.0285 *
## poly(x, 4)2 -21.0586 1.0415 -20.220 <2e-16 ***
## poly(x, 4)3 -0.3048 1.0415 -0.293 0.7704
## poly(x, 4)4 -0.4926 1.0415 -0.473 0.6373
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1.084654)
##
## Null deviance: 552.21 on 99 degrees of freedom
## Residual deviance: 103.04 on 95 degrees of freedom
## AIC: 298.78
##
## Number of Fisher Scoring iterations: 2
The p-values show that the linear and quadratic terms are statistically significants and that the cubic and 4th degree terms are not statistically significants. This agree strongly with our cross-validation results which were minimum for the quadratic model.
P174 12
P337 3
www.github.com/cesanlau