scRNA|R版CytoTRACE v2从0开始完成单细胞分化潜能预测-腾讯云开发者社区-腾讯云 (tencent.com)
library(CytoTRACE2)
expl <- as.matrix(sce@assays$RNA@counts)
expl <- expl[apply(expl > 0, 1, sum) >= 5, ]
cytotrace2_result_sce <- cytotrace2(sce[rownames(expl), ],
is_seurat = TRUE,
slot_type = "counts",
species = 'mouse',
ncores = 60,
seed = 1234)
annotation <- data.frame(phenotype = sce@meta.data$seurat_clusters) %>%
set_rownames(., colnames(sce))
plots <- plotData(cytotrace2_result = cytotrace2_result_sce,
annotation = annotation,
is_seurat = TRUE)
# 绘制CytoTRACE2_Potency的umap图
p1 <- plots$CytoTRACE2_UMAP
# 绘制CytoTRACE2_Potency的umap图
p2 <- plots$CytoTRACE2_Potency_UMAP
# 绘制CytoTRACE2_Relative的umap图 ,v1
p3 <- plots$CytoTRACE2_Relative_UMAP
# 绘制各细胞类型CytoTRACE2_Score的箱线图
p4 <- plots$CytoTRACE2_Boxplot_byPheno
pdf("CytoTRACE2_UMAP.pdf", width = 16, height = 4)
(p1+p2+p3+p4) + patchwork::plot_layout(ncol = 4)
dev.off()
pdf("CytoTRACE2_Boxplot_byPheno.pdf", width = 8, height = 5.5)
p4 + theme(text = element_text(size = 12))
dev.off()
saveRDS(cytotrace2_result_sce, "cytotrace2_result_sce.Rds")
pdf("CytoTRACE2_Relative.pdf", width = 8, height = 8)
FeaturePlot(cytotrace2_result_sce, "CytoTRACE2_Relative",pt.size = 1.5) +
scale_colour_gradientn(colours =
(c("#9E0142", "#F46D43", "#FEE08B", "#E6F598",
"#66C2A5", "#5E4FA2")),
na.value = "transparent",
limits = c(0, 1),
breaks = seq(0, 1, by = 0.2),
labels = c("0.0 (More diff.)",
"0.2", "0.4", "0.6", "0.8", "1.0 (Less diff.)"),
name = "Relative\norder \n",
guide = guide_colorbar(frame.colour = "black",
ticks.colour = "black")) +
ggtitle("CytoTRACE 2") +
xlab("UMAP1") + ylab("UMAP2") +
theme(legend.text = element_text(size = 12),
legend.title = element_text(size = 12),
axis.text = element_text(size = 12),
axis.title = element_text(size = 12),
plot.title = element_text(size = 14,
face = "bold", hjust = 0.5,
margin = margin(b = 0))) +
theme(aspect.ratio = 1) + tidydr::theme_dr()
dev.off()
library(ggpubr)
p1 <- ggboxplot(cytotrace2_result_sce@meta.data, x="seurat_clusters", y="CytoTRACE2_Score", width = 0.6,
color = "black",#轮廓颜色
fill="seurat_clusters",#填充
# palette = "npg",
xlab = F, #不显示x轴的标签
bxp.errorbar=T, #显示误差条
bxp.errorbar.width=0.5, #误差条大小
size=1, #箱型图边线的粗细
outlier.shape=NA, #不显示outlier
legend = "right") #图例放右边
# my_comparisons <- list(c("Epi", "un"), c("T", "un"),c("Myeloid", "un"))
pdf("CytoTRACE2_Score_boxplot.pdf", width = 8, height = 4.5)
p1 + scale_color_manual(values = colors_set)#+stat_compare_means(comparisons = my_comparisons,method = "wilcox.test")
dev.off()