2. 各阶段样本量相等的情况(Pocock&OBF)

       各阶段等样本量的情况下,前面提到的各阶段统计量及协方差

       Z_{k^\sim}为各个阶段的统计量,n_{k^\sim}为对应的样本量, Z_k^*为累计至阶段k时的统计量。
       可以简化为
                                                 Z_k^*=\frac{1}{\sqrt{k}}\sum_{k^\sim=1}^kZ_{k^\sim}Cov(Z_k^*,Z_{k'}^*)=\sqrt{\frac{k}{k'}} for k≤k'

       常见的方法包括Pocock、OBF以及Wang and Tsiatis。Wang and Tsiatis通过修改特定的参数可以产生不同的界值,当界值为0.5时即为Pocock,当界值为0时即为OBF。

  • Pocock

Pocock方法使各个不同阶段分析的界值相同,即针对Z_k^* (k=1,...,K)u_1=...=u_K=u'
使P_{H0}(|Z_1^*|≥u',...,|Z_K^*|≥u')=α
u'与给定的α以及总的分析次数K有关,因此标记为c_p(K,α)
即Pocock的接受域为(-u';u'),u'=c_p(K,α), k=1,...,K

  • O'Brien and Fleming

Pocock是各次期中分析的界值均相同,而OBF方法随着期中分析越往后界值越小。
P_{H0}(|Z_1^*|≥u_1,...,|Z_K^*|≥u_K)=α
u'与给定的α以及第几次分析k有关,因此标记为c_{OBF}(K,α)/\sqrt{k}
即OBF的接受域为(-u_k;u_k),u'=c_p(K,α)/\sqrt{k}, k=1,...,K

  • Wang and Tsiatis

是在Pocock和OBF方法上的扩展,通过更改位移参数delta可以获得不同的界值。
接受域为(-u_k;u_k),u_k=c_{WT}(K,α,△)k^{△-0.5}, k=1,...,K
当△=0.5时为Pocock,此时不同期中分析的界值相同。当△=0时,此时为OBF,越接近最终分析界值越小,在样本量较少的早期期中分析时越不容易拒绝原假设。
通过u_k=c_{WT}(K,α,△)k^{△-0.5}计算各个阶段的界值以及一类错误。
梳理给出了不同K、α、△时c_{WT}(K,α,△)的取值以及膨胀因子。

Group Sequential and Confirmatory Adaptive Designs in Clinical Trialsg
三种方法的对比举例

  • 双侧检验对称界值

前面的Pocock和OBF仅考虑了有效终止,界值为(-u';u')(-u_k';u_k')继续试验,反之有效终止。这里针对双侧检验进行有效或无效终止,采用对称的界值(Pampallona and Tsiatis),即

  • Z_k^*∈(u_k^0;u_k^1) or Z_k^*∈(u_k^1;u_k^0)时继续试验
  • Z_k^*∈(-u_k^0;u_k^0)时无效中止
  • Z_k^*∈(+∞;u_k^0) or Z_k^*∈(-u_k^0;-∞) 时有效中止
    在最终分析时,u_K^0=u_K^1

---计算方法---
基于前面的Wang and Tsiatis方法,需要考虑无效中止,因此额外加入β

计算公式:
       u_k^0=v_k-c^0(K,α,β,△)k^{△-0.5}, k=1,...,K
       u_k^1=c^1(K,α,β,△)k^{△-0.5}, k=1,...,K
       v_k=\sqrt{k} (c^0+c^1)K^{△-1}
c^0,c^1只跟α,β,△,K有关,给定了想这些参数后,可以计算出c^0c^1以及v_k,进而计算出各个阶段的界值。

书中table2.7及2.8给出了不同△、α、β、K对应的c^0c^1以及样本量膨胀因子。

k* denotes the first stage where H0 can be accepted. In parentheses: expected reduction in sample size under H0, the value midway between H0 and H1, and H1, respectively

计算举例
取△=0,α=0.05,1-β=0.8,K=4。根据表格2.7,c^0=1.9892, c^1=3.9055。
v_k=\sqrt{k}(c^0+c^1)K^{△-0.5}=\sqrt{k}(1.9892+3.9055)4^{-1}=\sqrt{k}1.4738
    u_1^0=1.4738-1.9892<0
    u_2^0=\sqrt{2}*1.4738-1.9892/\sqrt{2}=0.678
    u_3^0=\sqrt{3}*1.4738-1.9892/\sqrt{3}=1.404

    u_4^0=\sqrt{4}*1.4738-1.9892/\sqrt{4}=1.953
    u_1^1=3.9055
    u_2^1=3.9055/\sqrt{2}=2.762
    u_3^1=3.9055/\sqrt{3}=2.255
    u_4^1=3.9055/\sqrt{4}=1.953
    因此(u_1^0,u_2^0,u_3^0,u_4^0)=(-,0.678,1.404,1.953)(u_1^1,u_2^1,u_3^1,u_4^1)=(-,2.762,2.255,1.953)

  • 单侧检验

单侧检验:H_0:μ≤μ_0H_1:μ>μ_0
对应的
    * Z_k^*∈(-∞;u_k) 时无效中止,即接受H0
    * Z_k^*∈(u_k;+∞) 时有效中止,即拒绝H0

控制一类错误需要满足:P_{H_0}(Z_1^*≥u_1 or ,...,Z_K^*≥u_K)=α
可以采用前面提到的Wang and Tisatis来控制一类错误,产生有效终止的界值。
无效终止书中提到的方法DeMets and Ware,此时无效终止的界值为一个常量u^L
    * Z_k^*∈(-∞;u^L) 时无效中止,即接受H0
    * Z_k^*∈(u^L;u_k) 时继续试验,
    * Z_k^*∈(u_k;+∞) 时有效中止,即拒绝H0
u^L=-∞时即仅考虑有效中止。


在固定样本量试验中,单侧和双侧检验通常可以采用同一个界值。但是在成组序贯单侧检验中,两者不一定相等。
参考:Group Sequential and Confirmatory Adaptive Designs in Clinical Trials(by Gernot Wassmer &Werner Brannath)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352