手把手教你:人脸识别的视频打码(基于opencv的人脸打马赛克)

原文地址

@TOC
</font>
<hr style=" border:solid; width:100px; height:1px;" color=#000000 size=1">

项目简介

本文主要介绍如何使用python搭建:一个基于opencv和人脸识别的视频打码系统。

<font color=#999AAA >博主也参考过网上其他博主介绍人脸识别,或是视频加马赛克的文章,但大多是理论大于方法。很多同学肯定对原理不需要过多了解,只需要搭建出一个识别系统即可。
</font>

本文只会告诉你如何快速搭建一个人脸识别的考勤系统并运行,原理的东西可以参考其他博主

也正是因为我发现网上大多的帖子只是针对原理进行介绍,功能实现的相对很少。

如果您有以上想法,那就找对地方了!

<hr style=" border:solid; width:100px; height:1px;" color=#000000 size=1">

<font color=#999AAA >提示:以下是本篇文章正文内容

一、项目功能简介

  • 本次项目选择对:周雨彤小姐姐所演的视频进行打码。为什么选择这个小姐姐,客户选的,我也没法。
  • 小姐姐照片如下:
    [图片上传失败...(image-38a90f-1650939590259)]
    [图片上传失败...(image-e467b9-1650939590259)]
  • 这里为了进行下一步人脸识别,大概收集了10张左右带人脸的照片。不得不说,小姐姐是真好看。
  • 需要打码的视频:
    [图片上传失败...(image-afa442-1650939590259)]
  • 打码后的视频:

[图片上传失败...(image-b90c69-1650939590259)]

  • 当然有些同学认为这个码打的太粗了,也可以调整打码的粗细程度,依稀还能看得出小姐姐的轮廓
    [图片上传失败...(image-472ade-1650939590259)]
  • 当然,既然是人脸识别进行打码,那针对人脸识别的敏感程度、马赛克的大小等,都可以通过参数进行调整,下面我就详细介绍一下怎么实现。

二、环境需求

因为本项目基于TensorFlow因此需要以下环境:

  • tensorflow==1.7
  • scipy
  • scikit-learn
  • opencv-python
  • h5py
  • matplotlib
  • Pillow
  • requests
  • psutil
  • pyqt5

环境安装实例

环境都可以通过pip进行安装。如果只是想要功能跑起来,这边建议tensorflow安装cpu版的。

<font color=#999AAA >如果没使用过pycharm通过pip安装包的同学可以参考如下:

[图片上传失败...(image-14f80b-1650939590259)]
点开“终端”,然后通过pip进行安装tensorflow,其他环境包也可以通过上面的方法安装。

三、功能模块介绍

1.人脸库图像

人脸库图像放在项目中:data/my_data/“人名”/“图片名”.jpg。

我这里用了5个明星的人脸图像,可以根据你自己需要识别的人脸构建你自己的人脸库。

<font color=#999AAA >如下:
[图片上传失败...(image-593926-1650939590259)]

2.构建人脸库

将图片放好后

执行:src/align/align_dataset_mtcnn.py文件
[图片上传失败...(image-eca3bb-1650939590259)]
和:src/classifier.py文件

[图片上传失败...(image-8782b2-1650939590259)]

执行上述2个文件完成后。
在:data/my_data_160文件夹中会生成自己的人脸库图像。
在:20170512-110547/my_classifier.pkl中会生成自己的人脸库图像分类。
[图片上传失败...(image-2f4cca-1650939590259)]

3.启动视频打码功能

确保上述文件执行完成并成功后。

执行:contributed/real_time_face_recognition.py,即可启动上面的人脸打码功能。

[图片上传失败...(image-a886d6-1650939590259)]

  • 下面附一部分项目的关键代码:

  • 人脸打码功能:

def do_mosaic(frame, x, y, w, h, neighbor=20):
    """
    马赛克的实现原理是把图像上某个像素点一定范围邻域内的所有点用邻域内左上像素点的颜色代替,这样可以模糊细节,但是可以保留大体的轮廓。
    :param frame: opencv frame
    :param int x : 马赛克左顶点
    :param int y: 马赛克右顶点
    :param int w: 马赛克宽
    :param int h: 马赛克高
    :param int neighbor: 马赛克每一块的宽
    """
    fh, fw = frame.shape[0], frame.shape[1]
    if (y + h > fh) or (x + w > fw):
        return
    for i in range(0, h - neighbor, neighbor):  # 关键点0 减去neightbour 防止溢出
        for j in range(0, w - neighbor, neighbor):
            rect = [j + x, i + y, neighbor, neighbor]
            color = frame[i + y][j + x].tolist()  # 关键点1 tolist
            left_up = (rect[0], rect[1])
            right_down = (rect[0] + neighbor - 1, rect[1] + neighbor - 1)  # 关键点2 减去一个像素
            cv2.rectangle(frame, left_up, right_down, color, -1)

  • 图像预处理,人脸对齐:
def main(args):
    sleep(random.random())
    output_dir = os.path.expanduser(args.output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
    dataset = facenet.get_dataset(args.input_dir)

    print('Creating networks and loading parameters')

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key)

    with open(bounding_boxes_filename, "w") as text_file:
        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if args.random_order:
            random.shuffle(dataset)
        for cls in dataset:
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if args.random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir, filename + '.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        img = misc.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 2:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = facenet.to_rgb(img)
                        img = img[:, :, 0:3]

                        bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
                        nrof_faces = bounding_boxes.shape[0]
                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces > 1:
                                if args.detect_multiple_faces:
                                    for i in range(nrof_faces):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1],
                                                         (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
                                    offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                                    index = np.argmax(
                                        bounding_box_size - offset_dist_squared * 2.0)  # some extra weight on the centering
                                    det_arr.append(det[index, :])
                            else:
                                det_arr.append(np.squeeze(det))

                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = np.zeros(4, dtype=np.int32)
                                bb[0] = np.maximum(det[0] - args.margin / 2, 0)
                                bb[1] = np.maximum(det[1] - args.margin / 2, 0)
                                bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1])
                                bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0])
                                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                                scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear')
                                nrof_successfully_aligned += 1
                                filename_base, file_extension = os.path.splitext(output_filename)
                                if args.detect_multiple_faces:
                                    output_filename_n = "{}_{}{}".format(filename_base, i, file_extension)
                                else:
                                    output_filename_n = "{}{}".format(filename_base, file_extension)
                                misc.imsave(output_filename_n, scaled)
                                text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))

    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' % nrof_successfully_aligned)

完整代码地址

感兴趣的同学可以下载完整代码,使用过程中如遇到任何问题可以私信我,我都会一一解答。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容