tf.nn.softmax

def softmax(logits, axis=None, name=None, dim=None):

This function performs the equivalent of

      softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis)


logits: A non-empty `Tensor`. Must be one of the following types: `half`, `float32`, `float64`.

axis: The dimension softmax would be performed on. The default is -1 which indicates the last dimension.

name: A name for the operation (optional).

dim: Deprecated alias for `axis`.

Returns: A `Tensor`. Has the same type and shape as `logits`.


通过Softmax回归,将logistic的预测二分类的概率的问题推广到n分类的概率的问题

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容