机器学习基石笔记:02 Learning to Answer Yes/No、PLA、PA

一、Perceptron Learning Algorithm

(一)算法原理

PLA本质是二元线性分类算法,即用一条线/一个面/一个超平面将1、2维/3维/4维及以上数据集根据标签的不同一分为二。算法确定后,根据W取值的不同形成不同的h,构成假设集合H。如2维感知器算法,根据w_0,w_1,w_2的不同取值,构成了不同的h,这些h最终构成H。为了方便表示,将阈值的相反数记为w_0,对应的数据点增加一维x_0,恒为1。算法就是根据给定数据集DH中选出与目标模式f最为相似的g

图1.1 感知器假设的定义

图1.2 二维感知器

图1.3 感知器假设的向量表示

(二)更新规则/学习过程

遍历数据集合,若遇到异常点,即由当前W更新为新的W
若异常点的y值为+1,表明X与当前W的内积值为负,角度过大,更新后角度将会变小;若异常点的y值为-1,表明X与当前W的内积值为正,角度过小,更新后角度将会变大。
更新W的本质其实是从H中选出与f更为相似的h的过程。

图1.4 感知器学习算法

更新后不能保证异常点变为正常点,只是异常的程度小了点。

图1.5 感知器一次更新的结果

(三)停止更新

在当前W的情况下,遍历D中所有数据点,无异常点时停止更新。
然而一定能够保证能停止更新吗?即在当前W下无法找到一个新的W使得对应的hf更为接近?
答案是只要数据线性可分就能!

图1.6 PLA停止更新的充要条件

W_fW_t的内积值随着更新次数的上升而增大,同时,W_t的模也在增大。不过,内积增大的程度往往大于模增大的程度,保证了随着更新次数的上升,W_tW_f趋于越来越接近。

图1.7 内积值的增大

图1.8 模增大的上限

图1.9 整体趋势是越发接近

图1.10 二者余弦距离的下限

(四)PLA的优缺点

优点:简单、快速、任意维度;
缺点:假设数据线性可分,然而我们并不知道f,也就不知道是否可分。再来,要是知道线性可分,W也已经知道了,没有必要再用PLA了;经过多少次更新才能收敛也不知道,如上证明,TW_f有关,然而我们不知道W_f

图1.11 PLA的优缺点

二、Pocket Algorithm

若数据线性不可分,使用PA,即既然异常点无法避免,PA在H中找到一个使得异常点数目最小的h作为g
NP问题:O(n^k)为多项式型时间复杂度,O(k^n)/O(n!)/O(>\!n!)/...为指数型时间复杂度。问题分为可解问题和不可解问题,多项式型时间复杂度的可解问题为P问题,验证时为多项式型时间复杂度的问题为NP问题,能否可解未知。P问题肯定是NP问题,NP问题不一定是P问题。

图2.1 数据线性不可分的情况

PA,初始化W,放到口袋里,若遇到异常点,使用PLA的更新规则得到新的W,遍历数据集,若是新的W下异常点的数目更少,则用新的W替换旧的W放到口袋中,否则不替换。继续遍历数据集,得到下一个异常点,重复上述过程至足够迭代次数。口袋里放的永远是目前使得异常点最少的W
PA不影响PLA的正常运行,只是从历史W中挑出使得样本内分类错误最少的W作为最终返回值。

图2.2 PA流程

如果数据集是线性可分的,PLA和PA都能够实现D内无异常点的分类,但是PA的时间会长于PLA,因为多了比较两个不同的W下遍历一轮数据所得异常点数目多少的过程。

图2.3 PLA vs PA
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353