21丨朴素贝叶斯分类(下):如何对文档进行分类?

朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。

sklearn 机器学习包

sklearn 的全称叫 Scikit-learn,它给我们提供了 3 个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。自然界的现象比较适合用高斯朴素贝叶斯来处理,而文本分类是使用多项式朴素贝叶斯或者伯努利朴素贝叶斯。

高斯朴素贝叶斯:特征变量是连续变量,符合高斯分布,比如说人的身高,物体的长度。

多项式朴素贝叶斯:特征变量是离散变量,符合多项分布,在文档分类中特征变量体现在一个单词出现的次数,或者是单词的 TF-IDF 值等。

伯努利朴素贝叶斯:特征变量是布尔变量,符合 0/1 分布,在文档分类中特征是单词是否出现。

什么是 TF-IDF 值

TF-IDF 是一个统计方法,用来评估某个词语对于一个文件集或文档库中的其中一份文件的重要程度。

TF-IDF 实际上是两个词组 Term Frequency 和 Inverse Document Frequency 的总称,两者缩写为 TF 和 IDF,分别代表了词频和逆向文档频率。词频 TF计算了一个单词在文档中出现的次数,它认为一个单词的重要性和它在文档中出现的次数呈正比。

逆向文档频率 IDF,是指一个单词在文档中的区分度。它认为一个单词出现在的文档数越少,就越能通过这个单词把该文档和其他文档区分开。IDF 越大就代表该单词的区分度越大。

所以 TF-IDF 实际上是词频 TF 和逆向文档频率 IDF 的乘积。这样我们倾向于找到 TF 和IDF 取值都高的单词作为区分,即这个单词在一个文档中出现的次数多,同时又很少出现在其他文档中。这样的单词适合用于分类。

如何求 TF-IDF

在 sklearn 中我们直接使用 TfidfVectorizer 类,它可以帮我们计算单词 TF-IDF 向量的值。在这个类中,取 sklearn 计算的对数 log 时,底数是 e,不是 10。

创建 TfidfVectorizer 的方法是:

TfidfVectorizer(stop_words=stop_words, token_pattern=token_pattern)

我们在创建的时候,有两个构造参数,可以自定义停用词 stop_words 和规律规则token_pattern。需要注意的是传递的数据结构,停用词 stop_words 是一个列表 List 类型,而过滤规则 token_pattern 是正则表达式。

什么是停用词?停用词就是在分类中没有用的词,这些词一般词频 TF 高,但是 IDF 很低,起不到分类的作用。为了节省空间和计算时间,我们把这些词作为停用词 stopwords,告诉机器这些词不需要帮我计算。

当我们创建好 TF-IDF 向量类型时,可以用 fit_transform 帮我们计算,返回给我们文本矩阵,该矩阵表示了每个单词在每个文档中的 TF-IDF 值。在我们进行 fit_transform 拟合模型后,我们可以得到更多的 TF-IDF 向量属性,比如,我们可以得到词汇的对应关系(字典类型)和向量的 IDF 值,当然也可以获取设置的停用词stop_words。    

如何对文档进行分类

模块 1:对文档进行分词

在英文文档中,最常用的是 NTLK 包。在中文文档中,最常用的是 jieba 包。这些包中包含了停用词 stop words、分词和标注方法。

import nltk 

word_list = nltk.word_tokenize(text)  # 分词

 nltk.pos_tag(word_list)  # 标注单词的词性

模块 2:加载停用词表

从网上找到表,然后导入

stop_words = [line.strip().decode('utf-8') for line in io.open('stop_words.txt').readlines()]

模块 3:计算单词的权重

tf = TfidfVectorizer(stop_words=stop_words, max_df=0.5)  #这里 max_df 参数用来描述单词在文档中的最高出现率。假设 max_df=0.5,代表一个单词在 50% 的文档中都出现过了,那么它只携带了非常少的信息,因此就不作为分词统计。一般很少设置 min_df,因为 min_df 通常都会很小。

features = tf.fit_transform(train_contents)

模块 4:生成朴素贝叶斯分类

# 多项式贝叶斯分类器 

from sklearn.naive_bayes import MultinomiaNB 

clf = MultinomialNB(alpha=0.001).fit(train_features, train_labels)     #alpha 为平滑参数如果一个单词在训练样本中没有出现,这个单词的概率就会被计算为 0。但训练集样本只是整体的抽样情况,我们不能因为一个事件没有观察到,就认为整个事件的概率为0。为了解决这个问题,我们需要做平滑处理。

                                                                                                          当 alpha=1 时,使用的是 Laplace 平滑。Laplace 平滑就是采用加 1 的方式,来统计没有出现过的单词的概率。这样当训练样本很大的时候,加 1 得到的概率变化可以忽略不计,也同时避免了零概率的问题。

                                                                                                           当 0<alpha<1 时,使用的是 Lidstone 平滑。对于 Lidstone 平滑来说,alpha 越小,迭代次数越多,精度越高。我们可以设置 alpha 为 0.001。

模块 5:使用生成的分类器做预测

#得到测试集矩阵

test_tf = TfidfVectorizer(stop_words=stop_words, max_df=0.5, vocabulary=train_vocabulary)

test_features=test_tf.fit_transform(test_contents)

#求解所有后验概率并找出最大的那个

predicted_labels=clf.predict(test_features)

模块 6:计算准确率

from sklearn import metricsprint 

metrics.accuracy_score(test_labels, predicted_labels)

数据挖掘神器 sklearn

从数据挖掘的流程来看,一般包括了获取数据、数据清洗、模型训练、模型评估和模型部署这几个过程。

在模型评估中,sklearn 提供了 metrics 包,帮我们对预测结果与实际结果进行评估。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容