概览
PyTorch 是一个 Python 优先的深度学习框架,能够在强大的 GPU 加速基础上实现张量和动态神经网络。PyTorch的一大优势就是它的动态图计算特性。
License :MIT License
GitHub:https://github.com/pytorch/pytorch
Pytorch 是从Facebook孵化出来的,在0.4的最新版本加入了分布式模式,比较吃惊的是它居然没有采用类似于TF和MxNet的PS-Worker架构。而是采用一个还在Facebook孵化当中的一个叫做gloo的家伙。
PyTorch分布式
官方教程:http://pytorch.org/docs/master/distributed.html
其实这种三种backend对现在我们来说可以说是没得选的,只有gloo支持GPU
这里引入了一个新的函数model = torch.nn.parallel.DistributedDataParallel(model)
为的就是支持分布式模式
不同于原来在multiprocessing中的model = torch.nn.DataParallel(model,device_ids=[0,1,2,3]).cuda()
函数,这个函数只是实现了在单机上的多GPU训练,根据官方文档的说法,甚至在单机多卡的模式下,新函数表现也会优于这个旧函数。
这里要提到两个问题:
- 每个进程都有自己的Optimizer同时每个迭代中都进行完整的优化步骤,虽然这可能看起来是多余的,但由于梯度已经聚集在一起并跨进程平均,因此对于每个进程都是相同的,这意味着不需要参数广播步骤,从而减少了在节点之间传输张量tensor所花费的时间。
- 另外一个问题是Python解释器的,每个进程都包含一个独立的Python解释器,消除了来自单个Python进程中的多个执行线程,模型副本或GPU的额外解释器开销和“GIL-thrashing”。 这对于大量使用Python运行时的模型尤其重要。
Gloo
项目地址:https://github.com/facebookincubator/gloo
是一个类似MPI的通信库,你不需要考虑内存数据的拷贝,只需要实现逻辑就可以。
初始化
torch.distributed.init_process_group(backend, init_method='env://', **kwargs)
参数说明:
- backend(str): 后端选择,包括上面那几种
tcp
mpi
gloo
- init_method(str,optional): 用来初始化包的URL我理解是一个用来做并发控制的共享方式
- world_size(int, optional):参与这个工作的进程数
- rank(int,optional): 当前进程的rank
- group_name(str,optional): 用来标记这组进程名的
解释一下init_method()也有这三种方式,具体可参看http://pytorch.org/docs/master/distributed.html
- file:// 共享文件系统(要求所有进程可以访问单个文件系统)有共享文件系统可以选择
- tcp:// IP组播(要求所有进程都在同一个网络中)比较好理解,不过需要手动设置rank
- env:// 环境变量(需要您手动分配等级并知道所有进程可访问节点的地址)默认是这个
MINIST数据集示例
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import time
import torch.nn.parallel
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
#初始化
dist.init_process_group(init_method='file:///home/wangjue/lishuo/nfstest',backend="gloo",world_size=4,group_name="pytorch_test")
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
train_dataset=datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# 分发数据
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
if args.cuda:
# 分发模型
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
# model = torch.nn.DataParallel(model,device_ids=[0,1,2,3]).cuda()
# model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
tot_time=0;
for epoch in range(1, args.epochs + 1):
# 设置epoch位置,这应该是个为了同步所做的工作
train_sampler.set_epoch(epoch)
start_cpu_secs = time.time()
#long running
train(epoch)
end_cpu_secs = time.time()
print("Epoch {} of {} took {:.3f}s".format(
epoch , args.epochs , end_cpu_secs - start_cpu_secs))
tot_time+=end_cpu_secs - start_cpu_secs
test()
print("Total time= {:.3f}s".format(tot_time))