序列化概述
什么是序列化
序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是硬盘的持久化数据,转换成内存中的对象。
为什么要序列化
一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。
为什么不用Java的序列化
Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系等),不便于在网络中高效传输。所以,hadoop自己开发了一套序列化机制(Writable),特点如下:
- 紧凑
紧凑的格式能让我们充分利用网络带宽,而带宽是数据中心最稀缺的资源 - 快速
进程通信形成了分布式系统的骨架,所以需要尽量减少序列化和反序列化的性能开销,这是基本的; - 可扩展
协议为了满足新的需求变化,所以控制客户端和服务器过程中,需要直接引进相应的协议,这些是新协议,原序列化方式能支持新的协议报文; - 互操作
能支持不同语言写的客户端和服务端进行交互
常用数据序列化类型
Java类型 | Hadoop Writable类型 |
---|---|
boolean | BooleanWritable |
byte | ByteWritable |
int | IntWritable |
float | FloatWritable |
long | LongWritable |
double | DoubleWritable |
String | Text |
map | MapWritable |
array | ArrayWritable |
自定义bean对象实现序列化接口(Writable)
自定义bean对象要想序列化传输,必须实现序列化接口,需要注意以下7项
- 必须实现Writable接口
- 反序列化时,需要反射调用空参构造函数,所以必须有空参构造
- 重写序列化方法
- 重写反序列化方法
- 注意反序列化的顺序和序列化的顺序完全一致
- 要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
- 如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序。
例子
需求
统计每一个手机号耗费的总上行流量、下行流量、总流量
数据
输入数据
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200
1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200
1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200
1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 200
1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200
1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200
1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200
1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 200
1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200
1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 200
1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200
1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200
1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 200
1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200
1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 200
1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200
1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200
1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200
1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
输出数据格式
13480253104 180 180 360
分析
Map阶段
- 读取一行数据,切分字段
- 抽取手机号、上行流量、下行流量
- 以手机号为key,bean对象为value输出,即context.write(手机号,bean);
Reduce阶段
- 累加上行流量和下行流量得到总流量。
- 实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输
- MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key
所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable,然后重写key的compareTo方法。
编程
FlowBean编写
public class FlowBean implements Writable {
private int up;
private int down;
private int total;
public FlowBean() {
}
public FlowBean(int up, int down) {
this.up = up;
this.down = down;
this.total = up + down;
}
public int getUp() {
return up;
}
public void setUp(int up) {
this.up = up;
}
public int getDown() {
return down;
}
public void setDown(int down) {
this.down = down;
}
public int getTotal() {
return total;
}
public void setTotal(int total) {
this.total = total;
}
public void set(int up, int down) {
this.up = up;
this.down = down;
this.total = up + down;
}
@Override
public String toString() {
return this.up + "\t" + this.down + "\t" + this.total;
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeInt(up);
dataOutput.writeInt(down);
dataOutput.writeInt(total);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
this.up = dataInput.readInt();
this.down = dataInput.readInt();
this.total = dataInput.readInt();
}
}
Mapper编写
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
private Text ke = new Text();
FlowBean flowBean = new FlowBean();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] strings = value.toString().split("\t");
ke.set(strings[1]);
flowBean.set(Integer.parseInt(strings[8]), Integer.parseInt(strings[9]));
context.write(ke, flowBean);
}
}
Reducer编写
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
int totalUp = 0;
int totalDown = 0;
for(FlowBean flowBean:values) {
totalUp += flowBean.getUp();
totalDown += flowBean.getDown();
}
context.write(key, new FlowBean(totalUp, totalDown));
}
}
驱动编写
public class FlowDriver {
public static void main(String[] args) throws InterruptedException, IOException, ClassNotFoundException {
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);
job.setJarByClass(FlowDriver.class);
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean success = job.waitForCompletion(true);
System.exit(success ? 0 : 1);
}
}