互联网必备五大数据分析方法

最近地摊经济火热

被运营数据搞到头痛的小草莓

都忍不住想去天桥摆地摊了

在一番挣扎之后,给大家总结了互联网运营的五大数据分析方法

希望帮助大家在数据分析中越来越游刃有余~加油!

漏斗分析法

漏斗分析模型是业务分析中的重要方法,最常见的是应用于营销分析中,由于营销过程中的每个关键节点都会影响到最终的结果,所以在精细化运营应用广泛的今天,漏斗分析方法可以帮助我们把握每个转化节点的效率,从而优化整个业务流程。

其中,我们往往关注三个要点:

第一,从开始到结尾,整体的转化效率是多少?

第二,每一步的转化率是多少?

第三,哪一步流失最多,原因在什么地方?流失的用户符合哪些特征?

漏斗分析通常帮我们解决的不止是转化率的问题,精细化的漏斗分析,还可以帮助我们:

1、漏斗对比分析,从差异中找到优化方法对比不同用户群体、不同营销方式等的漏斗分析,可以帮助我们快速发现用户特点、营销方式的转化优势,找到在转化环节中,针对不同用户可优化的步骤,或营销方法中可强化的地方。

2、通过转化率定位转化最有效的关键方法 绝大部分的商业变现流程,都可以梳理出漏斗,通常我们会采取多种方法希望增加转化,漏斗分析可以帮助我们很好的梳理整个业务流程,明确最重要的转化节点,所以在分析的过程中,可以找出是否有其他不重要的过程参与,影响了主要流程的转化,从而进行取舍优化

漏斗模型典型案例

AARRR分析模型

Acquisition、Activation、Retention、Revenue、Refer,即用户获取、用户激活、用户留存、用户收益以及用户传播。

通过图可以看到,这是一个典型的逐级减少的漏斗图,通过对于每个环节转化率的分析变化,来确定实现最终转化的关键方法,不断进行优化迭代。

在目前的互联网产品普遍红海的情况下,增长专家们也对模型进行了新的思考和优化,在AARRR模型中,最为关注的是用户的获取,通过扩大漏斗顶端的流量池,实现最终转化的提高,在目前市场情况下,获客已经很难成为增长实现的最重要指标了,重新定义的RARRA模型,帮助人们把关注重点从用户获取转移到用户留存上,这就需要更多的去关注用户活跃和留存数据,这个也是后面我们会说到的用户分析方法中重要的分析指标。

漏斗分析方法的图表制作

https://mp.weixin.qq.com/s/HwaTf3rRVq7zZOqM10WeVg

在BDP中可以通过拖拽生成漏斗图,根据漏斗数据顺序排列,自动生成各级转化率,也可以根据需要调整每级数据颜色。

对比分析法

对比分析法不管是从生活中还是工作中,都会经常用到,对比分析法也称比较分析法,是将两个或两个以上相互联系的指标数据进行比较,分析其变化情况,了解事物的本质特征和发展规律。

在数据分析中,常用到的分3类:时间对比、空间对比以及标准对比。

时间对比:

最常用的就是同比环比,通过时间周期的数据对比,了解目前数据水平的高低

同比:某个周期的时段与上一个周期的相同时段比较,如今年的6月比去年的6月,本周的周一比上周的周一等等。

环比:某个时段与其上一个时长相等的时段做比较,比如本周环比上周等等。

在BDP中可以一键生成同环比分析,分为基于日期维度和非日期维度的,具体操作可参考下方文章

https://mp.weixin.qq.com/s/3Pj3-6l-7zleeXcpvxdqkg

空间对比:

即在相同时间范围内与不同空间指标数据进行对比

例如:不同部门、不同业务人员、不同地区等进行对比,比如各省份订单销售数据的差别对比,可以得出产品的优势地区重点突破,平衡人力物力等。

在BDP中可以通过对比拆分,实现同类数据不同维度的对比

https://mp.weixin.qq.com/s/hPUROk8fZigLvM_ybq1g2w

标准对比:

业务数据通常会设定目标计划,标准对比可以通过目前数据与设定的目标计划之间的对比,了解目前发展进程,完成进度等,了解差距后可以及时调整策略。

另外,BDP中,也可以设定一定的基准目标在图表中,清晰的展现达成情况,对于未达标的及时把控调整。


用户分析法

用户分析是互联网运营的核心,常用的分析方法包括:活跃分析,留存分析,用户分群,用户画等。在刚刚说到的RARRA模型中,用户活跃和留存是非常重要的环节,通过对用户行为数据的分析,对产品或网页设计进行优化,对用户进行适当引导等。

通常我们会日常监控「日活」、「月活」等用户活跃数据,来了解新增的活跃用户数据,了解产品或网页是否得到了更多人的关注,但是同时,也需要做留存分析,关注新增的用户是否真正的留存下来成为固定用户,留存数据才是真正的用户增长数据,才能反映一段时间产品的使用情况,关于活跃率、留存率的计算,可以参考下面的文章

活跃率:https://mp.weixin.qq.com/s/ukn0Yfpul3bkSchPhQIkaw

留存率:https://mp.weixin.qq.com/s/vp9O0x6gVOLukPUgEdNdTQ

那对活跃率和留存情况等数据的监控,要如何发现是否正常呢,需要关注数据变化的几种指标:

1、波动幅度:短时间内是否有大幅度波动

2、变化持续性:数据波动是否呈现持续性

3、变化规律性:数据变化是否是有一定规律的

4、各指标变化关联性:关注的各指标的变化间是否有一定的关联,比如相同时间升降、变化趋势相同等

细分分析法

在数据分析概念被广泛重视的今天,粗略的数据分析很难真正发现问题,精细化数据分析成为真正有效的方法,所以细分分析法是在本来的数据分析上做的更为深入和精细化。

例如分析北京地区课程转化情况,要细分到学生类型不同,小初高中不同阶段学生,细分到北京不同地区,海淀、朝阳、西城各地区情况不同,细分到不同学科等等,在数据分析的过程中,由粗到细,通过粗略的数据展示整体情况,细化到局部,分析具体原因。

在BDP中,可以通过几种方式,将整体数据和细分数据都进行分析,实现细分分析方法

1、多层钻取

通过多层钻取,直接在图表中点击查看细分数据,每层数据均可选择适合的图表类型进行展示 https://mp.weixin.qq.com/s/dS7p0nQiXqkXs6aOn4xoJw

2、聚焦下钻

在整体分析中,想要查看特别关注的部分数据详情,可以使用聚焦及下钻的功能,进行自由分析 https://mp.weixin.qq.com/s/W3AJF4af8NDsOOgkyRt4hQ

指标分析法

在实际工作中,这个方法应用的最为广泛,也是在使用其他方法进行分析的同时搭配使用突出问题关键点的方法,指直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等。在选择具体使用哪个基础指标时,需要考虑结果的取向性。

平均数:可以表现同类数据在不同的时间段的数据情况,用于总结趋势和在普遍规律中发现问题。另外,也可以对比在不同地区、不同情况下的同类数据的差异情况,比总量或者单独值更具有说服力

中位数:又称中值,是指按顺序排列的一组数据中居于中间位置的数,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。因为是通过排序得到的,它不受最大、最小两个极端数值的影响。例如在统计本季度市场招聘薪资时,由于可能有少部分属于最大值或最小值,用中位数呈现更为有意义。

部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常可以用它来描述这组数据的集中趋势。

最大(小)值

最大(小)值常可以用来展现数据中的“异常”情况,在某些数据分析中,异常值可以忽略,但有些最大(小)值的分析,可以研究影响因素,从而找到突破性的动作或可避免的方法,从而推动业务的增长。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352