使用watershed作为psenet的后处理

前段时间在跑文本检测的psenet模型,psenet的后处理过程使用了使用了一个称为PSE(progressive scale expansion,逐步的尺度扩张)的处理步骤来得到完整的word bbox,作者提供了C++和Python的PSE实现,其中使用Python版本的PSE非常缓慢。
最近在复现另一个文本检测模型CRAFT的过程中,接触到了用于分割的watershed/分水岭算法,opencv提供了watershed的函数接口cv2.watershed()
经过简单了解之后,发现分水岭算法的原理其实和PSE差不多,都是通过一些最初指定的kernel,然后不断向外扩张来达到图像分割的效果。于是试着用cv2.watershed()来代替Python版本的PSE处理。
相关代码如下:

...
img = img.resize((resize_w, resize_h), Image.BILINEAR)
input_img = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
    outputs = model(input_img)
    outputs = torch.sigmoid(outputs)
    score = outputs[:, 0, :, :]
    outputs = outputs > args.threshold # torch.uint8
    text = outputs[:, 0, :, :]
    kernels = outputs[:, 0:args.kernel_num, :, :] * text
score = score.squeeze(0).cpu().numpy()
text = text.squeeze(0).cpu().numpy()
kernels = kernels.squeeze(0).cpu().numpy()

tmp_marker = kernels[-1, :, :]
for i in range(args.kernel_num-2, -1, -1):
    sure_fg = tmp_marker
    sure_bg = kernels[i, :, :]
    watershed_source = cv2.cvtColor(sure_bg, cv2.COLOR_GRAY2BGR)
    unknown = cv2.subtract(sure_bg,sure_fg)
    ret, marker = cv2.connectedComponents(sure_fg)
    label_num = np.max(marker)
    marker += 1
    marker[unknown==1] = 0
    marker = cv2.watershed(watershed_source, marker)
    marker[marker==-1] = 1
    marker -= 1
    tmp_marker = np.asarray(marker, np.uint8)

label = tmp_marker
scale = (w / marker.shape[1], h / marker.shape[0])
bboxes = []
for i in range(1, label_num+1):
    # get [x,y] pair, points.shape=[n, 2]
    points = np.array(np.where(label == i)).transpose((1, 0))[:, ::-1]
    # similar to pixellink's min_area when post-processing
    if points.shape[0] < args.min_area / (args.scale * args.scale):
        continue
    #this filter op is very important, f-score=68.0(without) vs 69.1(with)
    score_i = np.mean(score[label == i])
    if score_i < args.min_score:
        continue
    rect = cv2.minAreaRect(points)
    bbox = cv2.boxPoints(rect) * scale
    bbox = bbox.astype('int32')
    bboxes.append(bbox.reshape(-1))
...

上面的代码模拟了PSE的过程,在ic15测试集上跑,速度比c++版本的PSE还快一些(使用的resnet152,速度对比:1.28fps vs 1.05fps)。但是准确率下降了约3个点(f-score:82.3 vs 85.4)。

不过我直接使用最大尺度的kernel作为watershed的源,不使用PSE的过程,直接从最小scale的kernel扩张到最大尺度的kernel,这样得到的结果反而更好一些,f-score达到了84.2。虽然比作者提供的PSE算法低一些,但是速度更快,能达到1.42fps,而且代码也挺简单的。
修改后的部分代码:

...
sure_fg = kernels[-1, :, :]
sure_bg = text
watershed_source = cv2.cvtColor(sure_bg, cv2.COLOR_GRAY2BGR)
unknown = cv2.subtract(sure_bg,sure_fg)
ret, marker = cv2.connectedComponents(sure_fg)
label_num = np.max(marker)
marker += 1
marker[unknown==1] = 0
marker = cv2.watershed(watershed_source, marker)
marker -= 1

label = marker
...

参考资料:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容