jvm之垃圾收集器

如果说收集算法是内存回收的方法论,那垃圾收集器就是内存回收的实践者。《Java虚拟机规范》中对垃圾收集器应该如何实现并没有做出任何规定,因此不同的厂商、不同版本的虚拟机所包含的垃圾收集器都可能会有很大差别,不同的虚拟机一般也都会提供各种参数供用户根据自己的应用特点和要求组合出各个内存分代所使用的收集器。

image.png

图3-6展示了七种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用,图中收集器所处的区域,则表示它是属于新生代收集器抑或是老年代收集器。接下来将逐一介绍这些收集器的目标、特性、原理和使用场景,并重点分析CMS和G1这两款相对复杂而又广泛使用的收集器,深入了解它们的部分运作细节。

在介绍这些收集器各自的特性之前,让我们先来明确一个观点:虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来,虽然垃圾收集器的技术在不断进步,但直到现在还没有最好的收集器出现,更加不存在“万能”的收集器,所以我们选择的只是对具体应用最合适的收集器。如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,HotSpot虚拟机完全没必要实现那么多种不同的收集器了。

Serial收集器

Serial收集器是最基础、历史最悠久的收集器,曾经(在JDK 1.3.1之前)是HotSpot虚拟机新生代收集器的唯一选择。大家只看名字就能够猜到,这个收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。“Stop The World”这个词语也许听起来很酷,但这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可知、不可控的情况下把用户的正常工作的线程全部停掉,这对很多应用来说都是不能接受的。读者不妨试想一下,要是你的电脑每运行一个小时就会暂停响应五分钟,你会有什么样的心情?图3-7示意了Serial/Serial Old收集器的运行过程。

image.png

对于“Stop The World”带给用户的恶劣体验,早期HotSpot虚拟机的设计者们表示完全理解,但也同时表示非常委屈:“你妈妈在给你打扫房间的时候,肯定也会让你老老实实地在椅子上或者房间外待着,如果她一边打扫,你一边乱扔纸屑,这房间还能打扫完?”这确实是一个合情合理的矛盾,虽然垃圾收集这项工作听起来和打扫房间属于一个工种,但实际上肯定还要比打扫房间复杂得多!

从JDK 1.3开始,一直到现在最新的JDK 13,HotSpot虚拟机开发团队为消除或者降低用户线程因垃圾收集而导致停顿的努力一直持续进行着,从Serial收集器到Parallel收集器,再到Concurrent MarkSweep(CMS)和Garbage First(G1)收集器,最终至现在垃圾收集器的最前沿成果Shenandoah和ZGC等,我们看到了一个个越来越构思精巧,越来越优秀,也越来越复杂的垃圾收集器不断涌现,用户线程的停顿时间在持续缩短,但是仍然没有办法彻底消除,探索更优秀垃圾收集器的工作仍在继续。

写到这里,似乎已经把Serial收集器描述成一个最早出现,但目前已经老而无用,食之无味,弃之可惜的“鸡肋”了,但事实上,迄今为止,它依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方,那就是简单而高效(与其他收集器的单线程相比),对于内存资源受限的环境,它是所有收集器里额外内存消耗(Memory Footprint)最小的;对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户桌面的应用场景以及近年来流行的部分微服务应用中,分配给虚拟机管理的内存一般来说并不会特别大,收集几十兆甚至一两百兆的新生代(仅仅是指新生代使用的内存,桌面应用甚少超过这个容量),垃圾收集的停顿时间完全可以控制在十几、几十毫秒,最多一
百多毫秒以内,只要不是频繁发生收集,这点停顿时间对许多用户来说是完全可以接受的。所以,Serial收集器对于运行在客户端模式下的虚拟机来说是一个很好的选择。

ParNew收集器

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如图3-8所示。

image.png

ParNew收集器除了支持多线程并行收集之外,其他与Serial收集器相比并没有太多创新之处,,但它却是不少运行在服务端模式下的HotSpot虚拟机,尤其是JDK 7之前的遗留系统中首选的新生代收集器,其中有一个与功能、性能无关但其实很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。

在JDK 5发布时,HotSpot推出了一款在强交互应用中几乎可称为具有划时代意义的垃圾收集器——CMS收集器。这款收集器是HotSpot虚拟机中第一款真正意义上支持并发的垃圾收集器,它首次实现了让垃圾收集线程与用户线程(基本上)同时工作。

遗憾的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作[1],所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器是激活CMS后(使用-XX:+UseConcMarkSweepGC选项)的默认新生代收集器,也可以使用-XX:+/-UseParNewGC选项来强制指定或者禁用它。

可以说直到CMS的出现才巩固了ParNew的地位,但成也萧何败也萧何,随着垃圾收集器技术的不断改进,更先进的G1收集器带着CMS继承者和替代者的光环登场。G1是一个面向全堆的收集器,不再需要其他新生代收集器的配合工作。所以自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。官方希望它能完全被G1所取代,甚至还取消了ParNew加Serial Old以及Serial加CMS这两组收集器组合的支持(其实原本也很少人这样使用),并直接取消了XX:+UseParNewGC参数,这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了。读者也可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。

ParNew收集器在单核心处理器的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程(Hyper-Threading)技术实现的伪双核处理器环境中都不能百分之百保证超越Serial收集器。当然,随着可以被使用的处理器核心数量的增加,ParNew对于垃圾收集时系统资源的高效利用还是很有好处的。它默认开启的收集线程数与处理器核心数量相同,在处理器核心非常多(譬如32个,现在CPU都是多核加超线程设计,服务器达到或超过32个逻辑核心的情况非常普遍)的环境中,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

Parallel Scavenge收集器

Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器……Parallel Scavenge的诸多特性从表面上看和ParNew非常相似,那它有什么特别之处呢?

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是处理器用于运行用户代码的时间与处理器总消耗时间的比值,即

image.png

如果虚拟机完成某个任务,用户代码加上垃圾收集总共耗费了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

-XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得
更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。

-XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数,也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称作“吞吐量优先收集器”。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得我们关注。这是一个开关参数,当这个参数被激活之后,就不需要人工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。这种调节方式称为垃圾收集的自适应的调节策略(GC Ergonomics)

如果读者对于收集器运作不太了解,手工优化存在困难的话,使用Parallel Scavenge收集器配合自适应调节策略,把内存管理的调优任务交给虚拟机去完成也许是一个很不错的选择。只需要把基本的内存数据设置好(如-Xmx设置最大堆),然后使用-XX:MaxGCPauseMillis参数(更关注最大停顿时间)或XX:GCTimeRatio(更关注吞吐量)参数给虚拟机设立一个优化目标,那具体细节参数的调节工作就由虚拟机完成了。自适应调节策略也是Parallel Scavenge收集器区别于ParNew收集器的一个重要特性。

Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用(需要说明一下,Parallel Scavenge收集器架构中本身有PS MarkSweep收集器来进行老年代收集,并非直接调用Serial Old收集器,但是这个PS MarkSweep收集器与Serial Old的实现几乎是一样的,所以在官方的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解),另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。这两点都将在后面的内容中继续讲解。Serial Old收集器的工作过程如图3-9所示。


image.png

Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于
老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比ParNew加CMS的组合来得优秀。

直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。Parallel Old收集器的工作过程如图3-10所示。


image.png

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
1)初始标记(CMS initial mark)
2)并发标记(CMS concurrent mark)
3)重新标记(CMS remark)
4)并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过图3-11可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的阶段。

image.png

CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”(Concurrent Low Pause Collector)。CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点:

首先,CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量+3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。如果应用本来的处理器负载就很高,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然大幅降低。为了缓解这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种,所做的事情和以前单核处理器年代PC机操作系统靠抢占式多任务来模拟多核并行多任务的思想一样,是在并发标记、清理的时候让收集器线程、用户线程交替运行,尽量减少垃圾收集线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得较少一些,直观感受是速度变慢的时间更多了,但速度下降幅度就没有那么明显。实践证明增量式的CMS收集器效果很一般,从
JDK 7开始,i-CMS模式已经被声明为“deprecated”,即已过时不再提倡用户使用,到JDK 9发布后iCMS模式被完全废弃。

然后,由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满
足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致
大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

还有最后一个缺点,在本节的开头曾提到,CMS是一款基于“标记-清除”算法实现的收集器,如果以前文章对前面这部分介绍还有印象的话,就可能想到这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题,
CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。

Garbage First收集器

Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。早在JDK 7刚刚确立项目目标、Oracle公司制定的JDK 7 RoadMap里面,G1收集器就被视作JDK 7中HotSpot虚拟机的一项重要进化特征。从JDK6 Update 14开始就有Early Access版本的G1收集器供开发人员实验和试用,但由此开始G1收集器的“实验状态”(Experimental)持续了数年时间,直至JDK 7 Update 4,Oracle才认为它达到足够成熟的商用程度,移除了“Experimental”的标识;到了JDK 8 Update 40的时候,G1提供并发的类卸载的支持,补全了其计划功能的最后一块拼图。这个版本以后的G1收集器才被Oracle官方称为“全功能的垃圾收集器”(Fully-Featured Garbage Collector)。

G1是一款主要面向服务端应用的垃圾收集器。HotSpot开发团队最初赋予它的期望是(在比较长期的)未来可以替换掉JDK 5中发布的CMS收集器。现在这个期望目标已经实现过半了,JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器。如果对JDK 9及以上版本的HotSpot虚拟机使用参数-XX:+UseConcMarkSweepGC来开启CMS收集器的话,用户会收到一个警告信息,提示CMS未来将会被废弃:

Java HotSpot(TM) 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release.

但作为一款曾被广泛运用过的收集器,经过多个版本的开发迭代后,CMS(以及之前几款收集器)的代码与HotSpot的内存管理、执行、编译、监控等子系统都有千丝万缕的联系,这是历史原因导致的,并不符合职责分离的设计原则。为此,规划JDK 10功能目标时,HotSpot虚拟机提出了“统一垃圾收集器接口”,将内存回收的“行为”与“实现”进行分离,CMS以及其他收集器都重构成基于这套接口的一种实现。以此为基础,日后要移除或者加入某一款收集器,都会变得容易许多,风险也可以控制,这算是在为CMS退出历史舞台铺下最后的道路了。

作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(Pause Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图3-12所示。

虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃
圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

image.png

G1将堆内存“化整为零”的“解题思路”,看起来似乎没有太多令人惊讶之处,也完全不难理解,但其中的实现细节可是远远没有想象中那么简单,否则就不会从2004年Sun实验室发表第一篇关于G1的论文后一直拖到2012年4月JDK 7 Update 4发布,用将近10年时间才倒腾出能够商用的G1收集器来。G1收集器至少有(不限于)以下这些关键的细节问题需要妥善解决:

  • ·譬如,将Java堆分成多个独立Region后,Region里面存在的跨Region引用对象如何解决?解决的思路我们已经知道:使用记忆集避免全堆作为GC Roots扫描,但在G1收集器上记忆集的应用其实要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作

  • 譬如,在并发标记阶段如何保证收集线程与用户线程互不干扰地运行?这里首先要解决的是用户线程改变对象引用关系时,必须保证其不能打破原本的对象图结构,导致标记结果出现错误,该问题的解决办法前面文章已经抽出独立来讲解过:CMS收集器采用增量更新算法实现,而G1收集器则是通过原始快照(SATB)算法来实现的。此外,垃圾收集对用户线程的影响还体现在回收过
    程中新创建对象的内存分配上,程序要继续运行就肯定会持续有新对象被创建,G1为每一个Region设计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在这个地址以上的对象是被隐式标记过的,即默认它们是存活的,不纳入回收范围。与CMS中
    的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度,G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”。

  • ·譬如,怎样建立起可靠的停顿预测模型?用户通过-XX:MaxGCPauseMillis参数指定的停顿时间只意味着垃圾收集发生之前的期望值,但G1收集器要怎么做才能满足用户的期望呢?G1收集器的停顿预测模型是以衰减均值(Decaying Average)为理论基础来实现的,在垃圾收集过程中,G1收集器会记录每个Region的回收耗时、每个Region记忆集里的脏卡数量等各个可测量的步骤花费的成本,并分析得出平均值、标准偏差、置信度等统计信息。这里强调的“衰减平均值”是指它会比普通的平均值更容易受到新数据的影响,平均值代表整体平均状态,但衰减平均值更准确地代表“最近的”平均状态。换句话说,Region的统计状态越新越能决定其回收的价值。然后通过这些信息预测现在开始回收的话,由
    哪些Region组成回收集才可以在不超过期望停顿时间的约束下获得最高的收益。

如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作),G1收集器的运作过程大致可划分为以下四个步骤:

  • 初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。

  • ·并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。

  • 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录

  • 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望。

从Oracle官方透露出来的信息可获知,回收阶段(Evacuation)其实本也有想过设计成与用户程序一起并发执行,但这件事情做起来比较复杂,考虑到G1只是回收一部分Region,停顿时间是用户可控制的,所以并不迫切去实现,而选择把这个特性放到了G1之后出现的低延迟垃圾收集器(即ZGC)中。另外,还考虑到G1不是仅仅面向低延迟,停顿用户线程能够最大幅度提高垃圾收集效率,为了保
证吞吐量所以才选择了完全暂停用户线程的实现方案。通过图3-13可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。

image.png

毫无疑问,可以由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。不过,这里设置的“期望值”必须是符合实际的,不能异想天开,毕竟G1是要冻结用户线程来复制对象的,这个停顿时间再怎么低也得有个限度。它默认的停顿目标为两百毫秒,一般来说,回收阶段占到几十到一百甚至接近两百毫秒都很正常,但如果我们把停顿时间调得非常低,譬如设置为二十毫秒,很可能出现的结果就是由于停顿目标时间太短,导致每次选出来的回收集只占堆内存很小的一部分,收集器收集的速度逐渐跟不上分配器分配的速度,导致垃圾慢慢堆积。很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间,但应用运行时间一长就不行了,最终占满堆引发Full GC反而降低性能,所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。

从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速(Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。

G1收集器常会被拿来与CMS收集器互相比较,毕竟它们都非常关注停顿时间的控制,官方资料中将它们两个并称为“The Mostly Concurrent Collectors”。在未来,G1收集器最终还是要取代CMS的,而当下它们两者并存的时间里,分个高低优劣就无可避免。

相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。

不过,G1相对于CMS仍然不是占全方位、压倒性优势的,从它出现几年仍不能在所有应用场景中代替CMS就可以得知这个结论。比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。

就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的。

在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

以上的优缺点对比仅仅是针对G1和CMS两款垃圾收集器单独某方面的实现细节的定性分析,通常我们说哪款收集器要更好、要好上多少,往往是针对具体场景才能做的定量比较。按照实践经验,目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间,当然,以上这些也仅是经验之谈,不同应用需要量体裁衣地实际测试才能得出最合适的结论,随着HotSpot的开发者对G1的不断优化,也会让对比结果继续向G1倾斜。

低延迟垃圾收集器

HotSpot的垃圾收集器从Serial发展到CMS再到G1,经历了逾二十年时间,经过了数百上千万台服务器上的应用实践,已经被淬炼得相当成熟了,不过它们距离“完美”还是很遥远。怎样的收集器才算是“完美”呢?这听起来像是一道主观题,其实不然,完美难以实现,但是我们确实可以把它客观描述出来。

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency),三者共同构成了一个“不可能三角”。三者总体的表现会随技术进步而越来越好,但是要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的,一款优秀的收集器通常最多可以同时达成其中的两项。

在内存占用、吞吐量和延迟这三项指标里,延迟的重要性日益凸显,越发备受关注。其原因是随着计算机硬件的发展、性能的提升,我们越来越能容忍收集器多占用一点点内存;硬件性能增长,对软件系统的处理能力是有直接助益的,硬件的规格和性能越高,也有助于降低收集器运行时对应用程序的影响,换句话说,吞吐量会更高。但对延迟则不是这样,硬件规格提升,准确地说是内存的扩大,对延迟反而会带来负面的效果,这点也是很符合直观思维的:虚拟机要回收完整的1TB的堆内存,毫无疑问要比回收1GB的堆内存耗费更多时间。由此,我们就不难理解为何延迟会成为垃圾收集器最被重视的性能指标了。现在我们来观察一下现在已接触过的垃圾收集器的停顿状况,如图3-14所示。


image.png

图3-14中浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的。由图3-14可见,在CMS和G1之前的全部收集器,其工作的所有步骤都会产生“Stop The World”式的停顿;CMS和G1分别使用增量更新和原始快照技术,实现了标记阶段的并发,不会因管理的堆内存变大,要标记的对象变多而导致停顿时间随之增长。但是对于标记阶段之后的处理,仍未得到妥善解决。CMS使用标记-清除算法,虽然避免了整理阶段收集器带来的停顿,但是清除算法不论如何优化改进,在设计原理上避免不了空间碎片的产生,随着空间碎片不断淤积最终依然逃不过“Stop The World”的命运。G1虽然可以按更小的粒度进行回收,从而抑制整理阶段出现时间过长的停顿,但毕竟也还是要暂停的。

大家肯定也从图3-14中注意到了,最后的两款收集器,Shenandoah和ZGC,几乎整个工作过程全部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定的,与堆的容量、堆中对象的数量没有正比例关系。实际上,它们都可以在任意可管理的(譬如现在ZGC只能管理4TB以内的堆)堆容量下,实现垃圾收集的停顿都不超过十毫秒这种以前听起来是天方
夜谭、匪夷所思的目标。这两款目前仍处于实验状态的收集器,被官方命名为“低延迟垃圾收集器”(Low-Latency Garbage Collector或者Low-Pause-Time Garbage Collector) 这里就不具体展开介绍了。

收集器的权衡

我们应该如何选择一款适合自己应用的收集器呢?这个问题的答案主要受以下三个因素影响:

  • 应用程序的主要关注点是什么?如果是数据分析、科学计算类的任务,目标是能尽快算出结果,那吞吐量就是主要关注点;如果是SLA应用,那停顿时间直接影响服务质量,严重的甚至会导致事务超时,这样延迟就是主要关注点;而如果是客户端应用或者嵌入式应用,那垃圾收集的内存占用则是不可忽视的。

  • 运行应用的基础设施如何?譬如硬件规格,要涉及的系统架构是x86-32/64、SPARC还是ARM/Aarch64;处理器的数量多少,分配内存的大小;选择的操作系统是Linux、Solaris还是Windows等。

  • ·使用JDK的发行商是什么?版本号是多少?是ZingJDK/Zulu、OracleJDK、Open-JDK、OpenJ9抑或是其他公司的发行版?该JDK对应了《Java虚拟机规范》的哪个版本?

一般来说,收集器的选择就从以上这几点出发来考虑。举个例子,假设某个直接面向用户提供服务的B/S系统准备选择垃圾收集器,一般来说延迟时间是这类应用的主要关注点,那么:

  • 如果你有充足的预算但没有太多调优经验,那么一套带商业技术支持的专有硬件或者软件解决方案是不错的选择,Azul公司以前主推的Vega系统和现在主推的Zing VM是这方面的代表,这样你就可以使用传说中的C4收集器了

  • 如果你虽然没有足够预算去使用商业解决方案,但能够掌控软硬件型号,使用较新的版本,同时又特别注重延迟,那ZGC很值得尝试。

  • ·如果你接手的是遗留系统,软硬件基础设施和JDK版本都比较落后,那就根据内存规模衡量一下,对于大概4GB到6GB以下的堆内存,CMS一般能处理得比较好,而对于更大的堆内存,可重点考察一下G1。

虚拟机及垃圾收集器日志

阅读分析虚拟机和垃圾收集器的日志是处理Java虚拟机内存问题必备的基础技能,垃圾收集器日志是一系列人为设定的规则,多少有点随开发者编码时的心情而定,没有任何的“业界标准”可言,换句话说,每个收集器的日志格式都可能不一样。除此以外还有一个麻烦,在JDK 9以前,HotSpot并没有提供统一的日志处理框架,虚拟机各个功能模块的日志开关分布在不同的参数上,日志级别、循环
日志大小、输出格式、重定向等设置在不同功能上都要单独解决。直到JDK 9,这种混乱不堪的局面才终于消失,HotSpot所有功能的日志都收归到了“-Xlog”参数上,这个参数的能力也相应被极大拓展了:

-Xlog[:[selector][:[output][:[decorators][:output-options]]]]

命令行中最关键的参数是选择器(Selector),它由标签(Tag)和日志级别(Level)共同组成。标签可理解为虚拟机中某个功能模块的名字,它告诉日志框架用户希望得到虚拟机哪些功能的日志输出。垃圾收集器的标签名称为“gc”,由此可见,垃圾收集器日志只是HotSpot众多功能日志的其中一项,全部支持的功能模块标签名如下所示:

add,age,alloc,annotation,aot,arguments,attach,barrier,biasedlocking,blocks,bot,breakpoint,bytecode,cens

日志级别从低到高,共有Trace,Debug,Info,Warning,Error,Off六种级别,日志级别决定了输出信息的详细程度,默认级别为Info,HotSpot的日志规则与Log4j、SLF4j这类Java日志框架大体上是一致的。另外,还可以使用修饰器(Decorator)来要求每行日志输出都附加上额外的内容,支持附加在日志行上的信息包括:

·time:当前日期和时间。
·uptime:虚拟机启动到现在经过的时间,以秒为单位。
·timemillis:当前时间的毫秒数,相当于System.currentTimeMillis()的输出。
·uptimemillis:虚拟机启动到现在经过的毫秒数。
·timenanos:当前时间的纳秒数,相当于System.nanoTime()的输出。
·uptimenanos:虚拟机启动到现在经过的纳秒数。
·pid:进程ID。
·tid:线程ID。
·level:日志级别。
·tags:日志输出的标签集。

如果不指定,默认值是uptime、level、tags这三个,此时日志输出类似于以下形式:

[3.080s][info][gc,cpu] GC(5) User=0.03s Sys=0.00s Real=0.01s

下面笔者举几个例子,展示在JDK 9统一日志框架前、后是如何获得垃圾收集器过程的相关信息,以下均以JDK 9的G1收集器(JDK 9下默认收集器就是G1,所以命令行中没有指定收集器)为例。

1)查看GC基本信息,在JDK 9之前使用-XX:+PrintGC,JDK 9后使用-Xlog:gc:

bash-3.2$ java -Xlog:gc GCTest
[0.222s][info][gc] Using G1
[2.825s][info][gc] GC(0) Pause Young (G1 Evacuation Pause) 26M->5M(256M) 355.623ms
[3.096s][info][gc] GC(1) Pause Young (G1 Evacuation Pause) 14M->7M(256M) 50.030ms
[3.385s][info][gc] GC(2) Pause Young (G1 Evacuation Pause) 17M->10M(256M) 40.576ms

2)查看GC详细信息,在JDK 9之前使用-XX:+PrintGCDetails,在JDK 9之后使用-X-log:gc,用通配符将GC标签下所有细分过程都打印出来,如果把日志级别调整到Debug或者Trace(基于版面篇幅考虑,例子中并没有),还将获得更多细节信息:

bash-3.2$ java -Xlog:gc* GCTest
[0.233s][info][gc,heap] Heap region size: 1M
[0.383s][info][gc ] Using G1
[0.383s][info][gc,heap,coops] Heap address: 0xfffffffe50400000, size: 4064 MB, Compressed Oops mode: Non-zero based:
0xfffffffe50000000, Oop shift amount: 3
[3.064s][info][gc,start ] GC(0) Pause Young (G1 Evacuation Pause)
gc,task ] GC(0) Using 23 workers of 23 for evacuation
[3.420s][info][gc,phases ] GC(0) Pre Evacuate Collection Set: 0.2ms
[3.421s][info][gc,phases ] GC(0) Evacuate Collection Set: 348.0ms
gc,phases ] GC(0) Post Evacuate Collection Set: 6.2ms
[3.421s][info][gc,phases ] GC(0) Other: 2.8ms
gc,heap ] GC(0) Eden regions: 24->0(9)
[3.421s][info][gc,heap ] GC(0) Survivor regions: 0->3(3)
[3.421s][info][gc,heap ] GC(0) Old regions: 0->2
[3.421s][info][gc,heap ] GC(0) Humongous regions: 2->1
[3.421s][info][gc,metaspace ] GC(0) Metaspace: 4719K->4719K(1056768K)
[3.421s][info][gc ] GC(0) Pause Young (G1 Evacuation Pause) 26M->5M(256M) 357.743ms
[3.422s][info][gc,cpu ] GC(0) User=0.70s Sys=5.13s Real=0.36s
[3.648s][info][gc,start ] GC(1) Pause Young (G1 Evacuation Pause)
[3.648s][info][gc,task ] GC(1) Using 23 workers of 23 for evacuation
[3.699s][info][gc,phases ] GC(1) Pre Evacuate Collection Set: 0.3ms
gc,phases ] GC(1) Evacuate Collection Set: 45.6ms
gc,phases ] GC(1) Post Evacuate Collection Set: 3.4ms
gc,phases ] GC(1) Other: 1.7ms
gc,heap ] GC(1) Eden regions: 9->0(10)
[3.699s][info][gc,heap ] GC(1) Survivor regions: 3->2(2)
[3.699s][info][gc,heap ] GC(1) Old regions: 2->5
[3.700s][info][gc,heap ] GC(1) Humongous regions: 1->1
[3.700s][info][gc,metaspace ] GC(1) Metaspace: 4726K->4726K(1056768K)
[3.700s][info][gc ] GC(1) Pause Young (G1 Evacuation Pause) 14M->7M(256M) 51.872ms
[3.700s][info][gc,cpu ] GC(1) User=0.56s Sys=0.46s Real=0.05s

.....

内存分配与回收策略 实战

Java技术体系的自动内存管理,最根本的目标是自动化地解决两个问题:自动给对象分配内存以及自动回收分配给对象的内存。关于回收内存这方面,已经使用了大量篇幅去介绍虚拟机中的垃圾收集器体系以及运作原理,现在我们来探讨一下关于给对象分配内存的那些事儿。

对象的内存分配,从概念上讲,应该都是在堆上分配(而实际上也有可能经过即时编译后被拆散为标量类型并间接地在栈上分配)。在经典分代的设计下,新生对象通常会分配在新生代中,少数情况下(例如对象大小超过一定阈值)也可能会直接分配在老年代。对象分配的规则并不是固定的,《Java虚拟机规范》并未规定新对象的创建和存储细节,这取决于虚拟机当前使用的是哪一种垃圾收集器,以及虚拟机中与内存相关的参数的设定。

对象优先在Eden分配

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。
HotSpot虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。在实际的问题排查中,收集器日志常会打印到文件后通过工具进行分析,不过本节实验的日志并不多,直接阅读就能看得很清楚。

在代码清单3-7的testAllocation()方法中,尝试分配三个2MB大小和一个4MB大小的对象,在运行时通过-Xms20M、-Xmx20M、-Xmn10M这三个参数限制了Java堆大小为20MB,不可扩展,其中10MB分配给新生代,剩下的10MB分配给老年代。-XX:Survivor-Ratio=8决定了新生代中Eden区与一个Survivor区的空间比例是8∶1,从输出的结果也清晰地看到“eden space 8192K、from space 1024K、to
space 1024K”的信息,新生代总可用空间为9216KB(Eden区+1个Survivor区的总容量)。
执行testAllocation()中分配allocation4对象的语句时会发生一次Minor GC,这次回收的结果是新生代6651KB变为148KB,而总内存占用量则几乎没有减少(因为allocation1、2、3三个对象都是存活的,虚拟机几乎没有找到可回收的对象)。产生这次垃圾收集的原因是为allocation4分配内存时,发现Eden已经被占用了6MB,剩余空间已不足以分配allocation4所需的4MB内存,因此发生Minor GC。垃圾收集期间虚拟机又发现已有的三个2MB大小的对象全部无法放入Survivor空间(Survivor空间只有1MB大小),所以只好通过分配担保机制提前转移到老年代去。

这次收集结束后,4MB的allocation4对象顺利分配在Eden中。因此程序执行完的结果是Eden占用4MB(被allocation4占用),Survivor空闲,老年代被占用6MB(被allocation1、2、3占用)。通过GC日志可以证实这一点。

代码清单3-7 新生代Minor GC

private static final int _1MB = 1024 * 1024;
/**
* VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8
*/
public static void testAllocation() {
byte[] allocation1, allocation2, allocation3, allocation4;
allocation1 = new byte[2 * _1MB];
allocation2 = new byte[2 * _1MB];
allocation3 = new byte[2 * _1MB];
allocation4 = new byte[4 * _1MB]; // 出现一次Minor GC
}
[GC [DefNew: 6651K->148K(9216K), 0.0070106 secs] 6651K->6292K(19456K), 0.0070426 secs] [Times: user=0.00 s
Heap
def new generation total 9216K, used 4326K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000)
image.png

在jdk8中输出结果是:

[GC (Allocation Failure) [PSYoungGen: 7010K->946K(9216K)] 7010K->5050K(19456K), 0.0043399 secs] [Times: user=0.02 sys=0.01, real=0.00 secs] 
Heap
 PSYoungGen      total 9216K, used 8837K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)
  eden space 8192K, 96% used [0x00000007bf600000,0x00000007bfdb4b58,0x00000007bfe00000)
  from space 1024K, 92% used [0x00000007bfe00000,0x00000007bfeec9c8,0x00000007bff00000)
  to   space 1024K, 0% used [0x00000007bff00000,0x00000007bff00000,0x00000007c0000000)
 ParOldGen       total 10240K, used 4104K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)
  object space 10240K, 40% used [0x00000007bec00000,0x00000007bf002020,0x00000007bf600000)
 Metaspace       used 3882K, capacity 4568K, committed 4864K, reserved 1056768K
  class space    used 430K, capacity 460K, committed 512K, reserved 1048576K

貌似是提前进行了minor gc?。

大对象直接进入老年代

大对象就是指需要大量连续内存空间的Java对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组,本节例子中的byte[]数组就是典型的大对象。大对象对虚拟机的内存分配来说就是一个不折不扣的坏消息,比遇到一个大对象更加坏的消息就是遇到一群“朝生夕灭”的“短命大对象”,我们写程序的时候应注意避免。在Java虚拟机中要避免大对象的原因是,在分配空间时,它容易导致内存明明还有不少空间时就提前触发垃圾收集,以获取足够的连续空间才能安置好它们,而当复制对象时,大对象就意味着高额的内存复制开销。HotSpot虚拟机提供了-XX:PretenureSizeThreshold参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在Eden区及两个Survivor区之间来回复制,产生大量的内存复制操作。

执行代码清单3-8中的testPretenureSizeThreshold()方法后,我们看到Eden空间几乎没有被使用,而老年代的10MB空间被使用了40%,也就是4MB的allocation对象直接就分配在老年代中,这是因为XX:PretenureSizeThreshold被设置为3MB(就是3145728,这个参数不能与-Xmx之类的参数一样直接写3MB),因此超过3MB的对象都会直接在老年代进行分配。

注意 -XX:PretenureSizeThreshold参数只对Serial和ParNew两款新生代收集器有效,HotSpot的其他新生代收集器,如Parallel Scavenge并不支持这个参数。如果必须使用此参数进行调优,可考虑ParNew加CMS的收集器组合。

private static final int _1MB = 1024 * 1024;
/**
* VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8
* -XX:PretenureSizeThreshold=3145728
*/
public static void testPretenureSizeThreshold() {
byte[] allocation;
allocation = new byte[4 * _1MB]; //直接分配在老年代中
}
Heap
 par new generation   total 9216K, used 3282K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)
  eden space 8192K,  40% used [0x00000007bec00000, 0x00000007bef34a18, 0x00000007bf400000)
  from space 1024K,   0% used [0x00000007bf400000, 0x00000007bf400000, 0x00000007bf500000)
  to   space 1024K,   0% used [0x00000007bf500000, 0x00000007bf500000, 0x00000007bf600000)
 tenured generation   total 10240K, used 4096K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)
   the space 10240K,  40% used [0x00000007bf600000, 0x00000007bfa00010, 0x00000007bfa00200, 0x00000007c0000000)
 Metaspace       used 3363K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 372K, capacity 388K, committed 512K, reserved 1048576K

长期存活的对象将进入老年代

HotSpot虚拟机中多数收集器都采用了分代收集来管理堆内存,那内存回收时就必须能决策哪些存活对象应当放在新生代,哪些存活对象放在老年代中。为做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器,存储在对象头中.对象通常在Eden区里诞生,如果经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,该对象会被移动到Survivor空间中,并且将其对象年龄设为1岁。对象在Survivor区中每熬过一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15),就会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。

读者可以试试分别以-XX:MaxTenuringThreshold=1和-XX:MaxTenuringThreshold=15两种设置来执行代码清单3-9中的testTenuringThreshold()方法,此方法中allocation1对象需要256KB内存,Survivor空间可以容纳。当-XX:MaxTenuringThreshold=1时,allocation1对象在第二次GC发生时进入老年代,新生代已使用的内存在垃圾收集以后非常干净地变成0KB。而当-XX:MaxTenuringThreshold=15时,第二次GC发生后,allocation1对象则还留在新生代Survivor空间,这时候新生代仍然有404KB被占用。

代码清单3-9 长期存活的对象进入老年代

private static final int _1MB = 1024 * 1024;
/**
* VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=1
* -XX:+PrintTenuringDistribution
*/
@SuppressWarnings("unused")
public static void testTenuringThreshold() {
byte[] allocation1, allocation2, allocation3;
allocation1 = new byte[_1MB / 4]; // 什么时候进入老年代决定于XX:MaxTenuringThreshold设置
allocation2 = new byte[4 * _1MB];
allocation3 = new byte[4 * _1MB];
allocation3 = null;
allocation3 = new byte[4 * _1MB];
}

以-XX:MaxTenuringThreshold=1参数来运行的结果:

image.png

以-XX:MaxTenuringThreshold=15参数来运行的结果:


image.png
动态对象年龄判定

为了能更好地适应不同程序的内存状况,HotSpot虚拟机并不是永远要求对象的年龄必须达到XX:MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到-XX:MaxTenuringThreshold中要求的年龄。

空间分配担保

在发生Minor GC之前,虚拟机必须先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那这一次Minor GC可以确保是安全的。如果不成立,则虚拟机会先查看XX:HandlePromotionFailure参数的设置值是否允许担保失败(Handle Promotion Failure);如果允许,那会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大
于,将尝试进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者-XX:HandlePromotionFailure设置不允许冒险,那这时就要改为进行一次Full GC。

解释一下“冒险”是冒了什么风险:前面提到过,新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况——最极端的情况就是内存回收后新生代中所有对象都存活,需要老年代进行分配担保,把Survivor无法容纳的对象直接送入老年代,这与生活中贷款担保类似。老年代要进行这样的担保,前提是老年代
本身还有容纳这些对象的剩余空间,但一共有多少对象会在这次回收中活下来在实际完成内存回收之前是无法明确知道的,所以只能取之前每一次回收晋升到老年代对象容量的平均大小作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。

取历史平均值来比较其实仍然是一种赌概率的解决办法,也就是说假如某次Minor GC存活后的对象突增,远远高于历史平均值的话,依然会导致担保失败。如果出现了担保失败,那就只好老老实实地重新发起一次Full GC,这样停顿时间就很长了。虽然担保失败时绕的圈子是最大的,但通常情况下都还是会将-XX:HandlePromotionFailure开关打开

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容