模型方差与偏差

面试过程中经常会被问到关于方差和偏差的概念以及比对。

偏差

偏差度量了学习算法的期望预测值与真实结果间的偏离程度,也就是刻画了模型本身的拟合能力,也就是偏差越大,意味着预测值越偏离真实数据。


高偏差

最直观的感受就是,如果训练误差很大,测试误差与训练误差相当,那么此时表明模型对训练数据的拟合并不是很好,这就是高偏差。

方差

方差刻画了同样大小训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响。说白了就是对预测值方差的描述,方差越大,则数据的分布越分散。


高方差

如果训练误差远高于测试误差,那么说明模型过拟合,此时表明模型的方差较高;

上述所指的模型误差是相对的,例如,人类肉眼识别猫狗的误差若在0.5%左右的话,那么我们的模型误差在其附近是合理的,因此,对于这种相对的误差而言,将其称作是先验知识,也就是贝叶斯误差。

偏差方差不可同求

偏差和方差不能同时满足。

在模型训练初期,由于迭代轮数较小,此时算法未能完全学习到训练集数据的内容,因此,此时模型的泛华错误率主要来自偏差,而随着轮数不断加深,算法完全拟合了训练集,学习到了训练集数据的波动规律,此时主要泛化错误率来自于方差。而再随着迭代的加深,训练数据的非全局性,非代表性的规律被学习到后,此时发生一点数据波动,模型都会被严重影响,此时可能发生了过拟合。

噪声

刻画了任何一种学习算法在该数据集上所能达到的期望泛化误差的下界,也就是刻画了学习问题本身的难度。

泛化性能与上述指标的关系

其实上述是指标共同构成的是泛化性能的大小,也就是说,泛化性能是由该算法的能力、数据的好坏以及学习任务本身的难度所共同决定的。给定一个学习任务,为了取得较好的泛化性能,需使得偏差较小,即能够充分拟合数据,同时要使得方差较小,也就是数据扰动带来的影响尽量小。

https://www.jianshu.com/p/ed9abdb0c867

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352