DNA甲基化

DNA的甲基化是在DNA的序列不变的条件下,在其中某些碱基上加上甲基的这样一个过程。DNA甲基化的结果,一般是使甲基化位点的下游的基因表达量变少。
DNA甲基转移酶家族(Dnmts)催化甲基从S-腺嘌呤甲硫氨酸(SAM)转移至胞嘧啶残基的第五个碳,形成5-甲基胞嘧啶(5mC)。
(a)Dnmt3a和Dnmt3b是从头 Dnmts并将甲基(红色)转移到裸DNA上。
(b)Dnmt1是维持Dnmt并在复制期间维持DNA甲基化模式。当DNA经历半保守复制时,亲本DNA支架保留原始DNA甲基化模式(灰色)。Dnmt1与复制灶相关联,并通过在新形成的子链(蓝色)上添加甲基(红色)来精确复制原始DNA甲基化模式。


1

DNA甲基化与组蛋白修饰和microRNA(miRNA)一起调节转录。在真核生物中,DNA与组蛋白结合,有助于将长链DNA包装到小核区。将包括甲基化,乙酰化,遍在蛋白化和磷酸化的化学修饰添加到N-末端组蛋白尾部的三个特定氨基酸上。这些修饰不仅影响DNA链的包装方式,还影响其转录活性。松散DNA与组蛋白结合的组蛋白修饰通常为转录提供了允许的环境,而紧密包装DNA和组蛋白的组蛋白修饰抑制了基因表达。Dnmts直接与调节通常参与基因抑制的组蛋白修饰的酶相互作用。已知Dnmt1和Dnmt3a都与组蛋白甲基转移酶SUV39H1结合,后者通过H3K9上的甲基化来限制基因表达。此外,Dnmt1和Dnmt3b都可以结合组蛋白脱乙酰酶,去除组蛋白的乙酰化,使DNA包装更紧密,限制转录的进入。通常,Dnmts与组蛋白修饰酶配合,所述组蛋白修饰酶参与添加和/或剥离组蛋白标记,以便在基因区域上施加抑制状态。

用亚硫酸氢盐来处理DNA。DNA当中,没有甲基化或羟甲基化的C碱基,就会被转化成U碱基。
在弱酸性条件下,亚硫酸氢根会结合到没有甲基化的C碱基的6位。而甲基化了的C碱基不会和亚硫酸氢根发生这个反应的。然后用碱来处理。结合了亚硫酸氢根的非甲基化的C,就被脱氨基,并且脱亚硫酸根。然后,就被转化成U碱基。甲基化或者羟甲基化的C碱基还保持了是“C”。
用亚硫酸氢盐来处理DNA,可以让99%左右的非甲基化的C碱基变成U。也就是说这种方法的的转化效率非常高,转化效率达到了99%。
经过亚硫酸氢盐转化过的DNA,再经过PCR,PCR新合成出来的链,U碱基的位置,就会被替换成了“T”。那么在接下来的测序过程中,测到的也是T碱基。而甲基化的C,因为没有被亚硫酸氢盐所转化,所以,在接下来的测序过程中,被测到的,还是“C”碱基。

甲基化的建库过程。
第一种,Illumina公司的Truseq DNA建库方法。
因为Illumina Truseq DNA建库试剂盒当中,它所提供的接头上的C碱基都是已经经过甲基化修饰了。所以,用这些接头做出来的文库,在用亚硫酸氢盐做转化的过程当中,它的(接头上的)C还是保持是C ,不会被转成U。带了这些接头的文库分子,就可以和测序芯片上的草皮DNA发生互补杂交。并且进一步发生桥式PCR反应。生成测序用的DNA的簇(Cluster)。但是,这个方法有一个缺点,就是在用亚硫酸氢盐处理DNA文库的时侯,90%以上的DNA链会断掉。这样,已经建好的文库,其中90%分子会被破坏掉。也就是说文库的丰富度就会损失90%以上。它的好处就是,在这个建库过程当中用的PCR循环数较少。所以它PCR扩增效率不同,所引起的文库不均一程度也就较低。也就是我们通常所说的PCR bias较少。
第二种,EpiCentre公司开发的EpiGnome方法。
第1步,亚硫酸氢盐先处理DNA,把未甲基化的C都转变成U。
第2步,把带标签1的随机引物加入,进行第一次的复制。得到第1条的复制链。
第3步,消化掉过量的引物。
第4步,加入带末端终止碱基、并带标签2的随机引物。这个引物的作用是让第1复制链延伸,并且加上标签2。
第5步,加入建库的PCR引物,进行PCR。通过PCR,把Index序列和成簇引物序列加入到链的两侧。得到真正的文库。
这个方法的优点是,把亚硫酸氢盐处理的过程,放在了建库之前。这样建成的库的丰富程度会比较高。但缺点就是要做较多的PCR循环,那么有了比较多的PCR循环之后,PCR产物的扩增均一性是不太好的。也就是说PCR bias会比较大。

因为甲基化文库中经过亚硫酸氢盐处理,绝大多数的C都变成了T。所以,这个文库中是严重地缺少C碱基的,也就是四种碱基的比例是严重不平衡的。这样在用HiSeq 2000或2500测序仪来测甲基化文库的过程当中,文库测序得到的数据质理就较差。并且经过PF过滤得到的有效的数据产量也会较低。为了弥补甲基化文库的碱基不平衡性,一般情况下,在上机过程当中,是掺入大比例的基因组文库,或者PhiX文库,来补充比较多的C碱基,一般会掺30%的PhiX文库、或者基因组文库。在掺入30%的PhiX文库的条件下,一条HiSeq 2000 V3 PE100的Lane,大概可以得到20G 左右的甲基化文库数据。也就是说,在HiSeq 2000或者2500平台上,甲基化文库的测序数据产量,一直都不是很高。质量也比较低。

来源:thinkando

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容