数组(简单)

image.png
 public String replaceSpaces(String S, int length) {
        /*String res="";*/
        StringBuilder builder = new StringBuilder("");
        char[] arr=S.toCharArray();
        for(int i=0;i<S.length();i++)
        {
            if(arr[i] ==' ')
            {
                builder.append("%20");
            }
            else {
                builder.append(arr[i]);
            }
        }
        return builder.toString();
    }
public String replaceSpaces(String S, int length) {
        char[] chs = S.toCharArray();
        int i = length-1, j = S.length()-1;
        while(i>=0){
            if(chs[i]==' '){
                chs[j--] = '0';
                chs[j--] = '2';
                chs[j--] = '%';
            }else{
                chs[j--] = chs[i];
            }
            i--;
        }
        return String.valueOf(chs,j+1, S.length()-j-1);
    }
image.png
public int[] twoSum(int[] nums, int target) {
        HashMap<Integer, Integer> map = new HashMap<>();
        for (int i=0;i<nums.length;i++) {
            if (!map.containsKey(target - nums[i]))
                map.put(nums[i],i);
            else
                return new int[]{i, map.get(target - nums[i])};
        }

        return new int[]{};
    }
image.png

image.png
public boolean findNumberIn2DArray(int[][] matrix, int target) {
        if(matrix == null || matrix.length == 0) {
            return false;
        }
        int m = matrix.length, n = matrix[0].length;
        int row = 0, col = n - 1;
        while(row < m && col >= 0) {
            if(matrix[row][col] > target) {
                col--;
            }else if(matrix[row][col] < target) {
                row++;
            }else {
                return true;
            }
        }
        return false;
    }

卡牌分组

public boolean hasGroupsSizeX(int[] deck) {
        int[] count = new int[10000];
        for (int c: deck)
            count[c]++;
        int g = -1;
        for (int i = 0; i < 10000; ++i)
            if (count[i] > 0) {
                if (g == -1)
                    g = count[i];
                else
                    g = gcd(g, count[i]);
            }
        return g >= 2;
    }

    public int gcd(int x, int y) {

        return x == 0 ? y : gcd(y%x, x);

    }
image.png
public void merge(int[] A, int m, int[] B, int n) {
    int all=m+n-1;
    int i=m-1;
    int j=n-1;
        while(i>=0&&j>=0)
    {
        if(A[i]<B[j])
        {
            A[all--]=B[j--];
        }
        else{
            A[all--]=A[i--];
        }
    }
        while(j>=0)
    {
        A[all--]=B[j--];
    }
image.png
public int[] twoSum(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int cur = nums[left] + nums[right];
            if (cur == target)
                return new int[]{nums[left], nums[right]};
            else if (cur > target)
                right--;
            else
                left++;
        }
        return new int[]{};
    }
public int[] twoSum(int[] nums, int target) {
        int[] res = {0,0};
        int i=0, j=nums.length-1;
        while(i<=j){
            if(nums[i]+nums[j]<target) i++;
            else if(nums[i]+nums[j]>target) j--;
            else break;
        }
        res[0] = nums[i];
        res[1] = nums[j];
        return res;
    }
image.png
public int search(int[] nums, int target) {
       int res=0;
       for(int num:nums)
       {
           if(num>target)
           {
               break;
           }
           if(num==target)
           {
               res++;
           }
       }
       return res;
}
public int search(int[] nums, int target) {
       
        HashMap<Integer, Integer> map = new HashMap<>();
        for(int num:nums)
        {
            if(map.containsKey(num)){
                map.put(num,map.get(num)+1);
            }
            else {
                map.put(num, 1);
            }
        }
        int res=0;
        if(map.containsKey(target))
        {
            res=map.get(target);
        }
        return res;

    }
public int search(int[] nums, int target) {
        int len=nums.length-1;
        int res=0;
        res=binarySearch(nums,0,len,target);
        return res;

    }
    public int binarySearch(int[] nums,int sta,int end,int target) {
        int res = 0;
        int temp = (sta+end) / 2;
        if(sta==end){
            if(target==nums[temp])
            {
                res++;
            }
        }
        while (sta < end) {
            if (target == nums[temp]) {
                res++;
                for (int i = temp + 1; i <= end; i++) {
                    if (nums[i] == target) {
                        res++;
                    } else {
                        break;
                    }
                }
                for (int i = temp - 1; i >= sta; i--) {
                    if (nums[i] == target) {
                        res++;
                    } else {
                        break;
                    }
                }
                return res;
            } else if (target > nums[temp]) {
                return binarySearch(nums, temp + 1, end, target);
            } else {
                return binarySearch(nums, 0, temp - 1, target);
            }
        }
        return res;
    }
image.png
既然数组中有出现次数> ⌊ n/2 ⌋的元素,那排好序之后的数组中,相同元素总是相邻的。
即存在长度> ⌊ n/2 ⌋的一长串 由相同元素构成的连续子数组。
举个例子:
无论是1 1 1 2 3,0 1 1 1 2还是-1 0 1 1 1,数组中间的元素总是“多数元素”,
毕竟它长度> ⌊ n/2 ⌋
public class one {
    public int majorityElement(int[] nums) {
        Arrays.sort(nums);
        return nums[nums.length >> 1];
    }
}
 public int majorityElement(int[] nums) {
            int count = 0, last = 0;
            for (int num: nums) {
                if (count == 0) {
                    last = num;
                }
                count = count + (last == num? 1: -1);
            }
            return last;
        }
image.png
public void moveZeroes(int[] nums) {
        int j=0;
        for(int i=0;i<nums.length;i++)
        {
            if(nums[i]!=0)
            {
                nums[j++]=nums[i];
            }
        }
        while (j<nums.length)
        {
            nums[j++]=0;
        }

    }

image.png
 public int findUnsortedSubarray(int[] nums) {
        int[] copy=nums.clone();
        Arrays.sort(copy);
        int left=0,right=0;
        for(int i=0;i<copy.length;i++)
        {
            if(copy[i]!=nums[i])
            {
                right=i;
                break;
            }
        }
        for(int i=copy.length-1;i>=left;i--)
        {
            if(copy[i]!=nums[i])
            {
                right=i;
                break;
            }
        }
        if(right==left)
        {
            return 0;
        }
        return right-left+1;
    }
public int findUnsortedSubarray(int[] nums) {
        int len = nums.length;
        if(len <= 1) {
            return 0;
        }
        int high = 0,low = len-1,curMax = Integer.MIN_VALUE,curMin=Integer.MAX_VALUE;
        for(int i = 0;i<len;i++){
            if(nums[i] >= curMax){
                curMax = nums[i];
            } else {
                high = i;
            }
            if(nums[len-i-1] <= curMin){
                curMin = nums[len-i-1];
            } else {
                low = len - i - 1;
            }
        }
        return high > low ? high -low + 1 : 0;
    }
image.png
public int missingNumber(int[] nums) {
        for(int i=0;i<nums.length;i++){
            if(nums[i]!=i){
                return i;
            }
        }
        return nums.length;
    }
image.png
public int[] exchange(int[] nums) {
        int left = 0;
        int right = nums.length - 1;
        while (left < right) {
            while (left < right && nums[left] % 2 != 0) {
                left++;
            }
            while (left < right && nums[right] % 2 == 0) {
                right--;
            }
            if (left < right) {
                int temp = nums[left];
                nums[left] = nums[right];
                nums[right] = temp;
            }
        }
        return nums;
    }
image.png
  • 可看评论区
public int[] getLeastNumbers(int[] arr, int k) {
            List<Integer> al=new ArrayList<>();
            for(Integer a:arr)
            {
                al.add(a);
            }
            al.sort(null);
            Integer[] array=al.toArray(new Integer[al.size()]);
            int[] res=new int[k];
            for(int i=0;i<k;i++){
                res[i]=array[i];
            }
            return res;
        }
public int[] getLeastNumbers(int[] arr, int k) {
        //return solA(arr, k);
        quickSort(arr, 0, arr.length - 1, k);
        return Arrays.copyOf(arr, k);

    }

    //单边快排(快速选择算法)
    //每次剪枝一半的区间,即piviot在k左侧,则左侧不用管了(必然已经是前k个数的一部分)。
    //在右则,右侧不用管了(必然不在前k数区间)
    private void quickSort(int[]arr, int l, int r, int k){
        if(l >= r) return;
        int i = l - 1, j = r + 1, x = arr[l];
        while(i < j){
            while(arr[++i] < x);
            while(arr[--j] > x);
            if(i < j){
                int t = arr[j];
                arr[j] = arr[i];
                arr[i] = t;
            }
        }
        if(k <= j) quickSort(arr, l, j, k);
        else quickSort(arr, j + 1, r, k);
    }

    //维护大小k的堆  nlogk
    private int[] solA(int[]arr, int k){
        PriorityQueue<Integer> pq = new PriorityQueue<>((o1, o2)->{
            return o2 - o1;
        });
        for(int i = 0; i < arr.length; i++){
            if(pq.size() < k) pq.add(arr[i]);
            else if(pq.size() == k && arr[i] < pq.peek()){
                pq.poll();
                pq.add(arr[i]);
            }
        }
        Integer[] res = new Integer[k];
        /*Java中 的java.util.PriorityQueue.toArray(arr [])
          方法用于形成与Priority   Queue相同元素的数组。
        基本上,它将所有元素从优先级队列复制到新数组。
        它创建了多个数组,与之前没有参数的方法不同。此方法将所有元素复制到arr []中。*/
        pq.toArray(res);
        int[] ans = new int[k];
        for(int i = 0; i < k; i++) ans[i] = res[i];
        return ans;
    }
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。