数据集的划分

Holdout检验

按一定比例划分为训练集和测试集
这种方法也称为保留法。我们通常取8-2、7-3、6-4、5-5比例切分,直接将数据随机划分为训练集和测试集,然后使用训练集来生成模型,再用测试集来测试模型的正确率和误差,以验证模型的有效性。
在验证集上计算出来的最后评估指标与原始分组有很大关系。

k-fold cross validation交叉验证法

交叉验证一般采用k折交叉验证,即,往往k取为10。在这种数据集划分法中,我们将数据集划分为k个子集,每个子集均做一次测试集,每次将其余的作为训练集。在交叉验证时,我们重复训练k次,每次选择一个子集作为测试集,并将k次的平均交叉验证的正确率作为最终的结果。

K越大,Bias越小。Variance越大
最后,我们要说说K的选取。事实上,和开头给出的文章里的部分内容一样,K的选取是一个Bias和Variance的trade-off。
K越大,每次投入的训练集的数据越多,模型的Bias越小。但是K越大,又意味着每一次选取的训练集之前的相关性越大(考虑最极端的例子,当k=N,也就是在LOOCV里,每次都训练数据几乎是一样的)。而这种大相关性会导致最终的test error具有更大的Variance。
一般来说,根据经验我们一般选择k=5或10。

Bootstrap自助法

不管是 Holdout检验还是交叉检验,都是基于划分训练集和测试集的方法进行模型评估的。然而,当样本规模比较小时,将样本集进行划分会让训练集进一步减小,这可能会影响模型训练效果。有没有能维持训练集样本规模的验证方法呢?自助法可以比较好地解决这个问题。自助法是基于自助采样法的检验方法。对于总数为n的样本集合,进行n次有放回的随机抽样,得到大小为n的训练集。n次采样过程中,有的样本会被重复采样,有的样本没有被抽出过,将这些没有被抽出的样本作为验证集,进行模型验证,这就是自助法的验证过程。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • 本文作者:王 歌文字编辑:戴 雯技术总编:张 邯 前面我们在举例时,通常是将所使用的数据集按照75%和25%...
    StataPython数据分析阅读 5,971评论 0 1
  • K折交叉验证 模块 |---|---sklearn.model_selection.KFold |sklearn....
    cnkai阅读 5,977评论 0 1
  • 常用方法:(1)简单分离训练集和测试集,(2)K折交叉验证分离1.最简单分离测试集和测试集:train_test_...
    孤独唯心阅读 4,824评论 0 0
  • 问题:如何划分训练集和验证集,从而保证验证集上的表现能代表模型的泛化能力。 1. 划分的基本准则 基本准则:保持训...
    清梦载星河阅读 5,622评论 0 0
  • 数据集划分为 训练集 开发集(交叉验证集) 测试集,最大化团队效率。 如何划分 将所有的数据随机洗牌,放入交叉验证...
    JPlino阅读 4,332评论 0 1

友情链接更多精彩内容