Spark生态圈概述与Hadoop对比

 Spark:快速的通用的分布式计算框架


  概述和特点:

1) Speed,(开发和执行)速度快。基于内存的计算;DAG(有向无环图)的计算引擎;基于线程模型;

2)Easy of use,易用 。 多语言(Java,python,scala,R); 多种计算API可调用;可在交互式模式下运行;

3)Generality  通用。可以一站式解决多个不同场景的应用业务

        Spark Streaming :用来做流处理

        MLlib : 用于机器学习

        GraphX:用来做图形计算的

4) Runs Everywhere  :

      (1)可以运行在Hadoop的yarn,Mesos,standalone(Sprk自带的)这些资源管理和调度的程序之上

      (2) 可以连接包括HDFS,Cassandra,HBase,S3这些数据源

  产生背景:

    1)MapReduce 局限性

      (1)代码繁琐(官网有WordOCunt案例)

      (2)效率低下:

          a) 有结果写入磁盘,降低效率;

          b) 通过进程模型,销毁创建效率低

      (3)只能支持map和reduce方法

      (4) 不适合迭代多次,交互式,流水的处理

    2) 框架的多样化

      (1)批处理(离线):MapReduce,Hive,Pig

      (2)流式处理(实时):Storm,Jstorm

      (3)交互式计算 :Impala

 综上: 框架的多样化导致生产时所需要的框架繁多,学习运维成本较高,那么有没有一种框架,

      既能执行效率高,学习成本低,还能支持批处理和流式处理与交互计算呢?

结论:Spark诞生


  Spark与Hadoop对比:

      Hadoop生态系统


          Hive:数据仓库

          R:数据分析

          Mahout:机器学习库

          pig:脚本语言,跟Hive类似

          Oozie:工作流引擎,管理作业执行顺序

          Zookeeper:用户无感知,主节点挂掉选择从节点作为主的

          Flume:日志收集框架

          Sqoop:数据交换框架,例如:关系型数据库与HDFS之间的数据交换

          Hbase : 海量数据中的查询,相当于分布式文件系统中的数据库


     BDAS:Berkeley Data Analytics Stack(伯克利数据分析平台)



     Spark与Hadoop生态圈对比



注意:在对实时的查询来说,Spark只是一个快速的分布式计算框架,所以没有存储的框架,但是可以连接多个存储的数据源

    Hadoop与Spark对比

    MapReduce与Spark对比:

        MapReduce:若进行多次计算,MP则需要将上一次执行结果写入到磁盘,叫做数据落地

        Spark:直接将存储在内存中的结果拿来使用,没有数据落地


  Spark与Hadoop的协作性




Spark概述和与Hadoop对比

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容